
The 30 Year Horizon

Manuel Bronstein William Burge T imothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison William Sit
Jonathan Steinbach Robert Sutor Barry Trager
Stephen Watt Jim Wen Clifton Williamson

Volume 13: Proving Axiom Correct

April 15, 2018

27a6c3636e8a29e74cd7f58e4e93c30a0e05334e

i

Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 2007 Alfredo Portes

Portions Copyright (c) 2007 Arthur Ralfs

Portions Copyright (c) 2005 Timothy Daly

Portions Copyright (c) 1991-2002,

The Numerical ALgorithms Group Ltd.

All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the following

conditions are

met:

- Redistributions of source code must retain the above

copyright notice, this list of conditions and the

following disclaimer.

- Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other

materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd.

nor the names of its contributors may be used to endorse

or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

ii

Inclusion of names in the list of credits is based on historical information and is as accurate
as possible. Inclusion of names does not in any way imply an endorsement but represents
historical influence on Axiom development.

iii

Michael Albaugh Cyril Alberga Roy Adler
Christian Aistleitner Richard Anderson George Andrews
Jerry Archibald S.J. Atkins Jeremy Avigad
Henry Baker Martin Baker Stephen Balzac
Yurij Baransky David R. Barton Thomas Baruchel
Gerald Baumgartner Gilbert Baumslag Michael Becker
Nelson H. F. Beebe Jay Belanger David Bindel
Fred Blair Vladimir Bondarenko Mark Botch
Raoul Bourquin Alexandre Bouyer Karen Braman
Wolfgang Brehm Peter A. Broadbery Martin Brock
Manuel Bronstein Christopher Brown Stephen Buchwald
Florian Bundschuh Luanne Burns William Burge
Ralph Byers Quentin Carpent Pierre Casteran
Robert Cavines Bruce Char Ondrej Certik
Tzu-Yi Chen Bobby Cheng Cheekai Chin
David V. Chudnovsky Gregory V. Chudnovsky Mark Clements
James Cloos Jia Zhao Cong Josh Cohen
Christophe Conil Don Coppersmith George Corliss
Robert Corless Gary Cornell Meino Cramer
Karl Crary Jeremy Du Croz David Cyganski
Nathaniel Daly Timothy Daly Sr. Timothy Daly Jr.
James H. Davenport David Day James Demmel
Didier Deshommes Michael Dewar Inderjit Dhillon
Jack Dongarra Jean Della Dora Gabriel Dos Reis
Claire DiCrescendo Sam Dooley Nicolas James Doye
Zlatko Drmac Lionel Ducos Iain Duff
Lee Duhem Martin Dunstan Brian Dupee
Dominique Duval Robert Edwards Hans-Dieter Ehrich
Heow Eide-Goodman Lars Erickson Mark Fahey
Richard Fateman Bertfried Fauser Stuart Feldman
John Fletcher Brian Ford Albrecht Fortenbacher
George Frances Constantine Frangos Timothy Freeman
Korrinn Fu Marc Gaetano Rudiger Gebauer
Van de Geijn Kathy Gerber Patricia Gianni
Gustavo Goertkin Samantha Goldrich Holger Gollan
Teresa Gomez-Diaz Laureano Gonzalez-Vega Stephen Gortler
Johannes Grabmeier Matt Grayson Klaus Ebbe Grue
James Griesmer Vladimir Grinberg Oswald Gschnitzer
Ming Gu Jocelyn Guidry Gaetan Hache
Steve Hague Satoshi Hamaguchi Sven Hammarling
Mike Hansen Richard Hanson Richard Harke
Bill Hart Vilya Harvey Martin Hassner
Arthur S. Hathaway Dan Hatton Waldek Hebisch
Karl Hegbloom Ralf Hemmecke Henderson
Antoine Hersen Nicholas J. Higham Hoon Hong
Roger House Gernot Hueber Pietro Iglio
Alejandro Jakubi Richard Jenks Bo Kagstrom
William Kahan Kyriakos Kalorkoti Kai Kaminski
Grant Keady Wilfrid Kendall Tony Kennedy
David Kincaid Keshav Kini Ted Kosan

iv

Paul Kosinski Igor Kozachenko Fred Krogh
Klaus Kusche Bernhard Kutzler Tim Lahey
Larry Lambe Kaj Laurson Charles Lawson
George L. Legendre Franz Lehner Frederic Lehobey
Michel Levaud Howard Levy J. Lewis
Ren-Cang Li Rudiger Loos Craig Lucas
Michael Lucks Richard Luczak Camm Maguire
Francois Maltey Osni Marques Alasdair McAndrew
Bob McElrath Michael McGettrick Edi Meier
Ian Meikle David Mentre Victor S. Miller
Gerard Milmeister Mohammed Mobarak H. Michael Moeller
Michael Monagan Marc Moreno-Maza Scott Morrison
Joel Moses Mark Murray William Naylor
Patrice Naudin C. Andrew Neff John Nelder
Godfrey Nolan Arthur Norman Jinzhong Niu
Michael O’Connor Summat Oemrawsingh Kostas Oikonomou
Humberto Ortiz-Zuazaga Julian A. Padget Bill Page
David Parnas Susan Pelzel Michel Petitot
Didier Pinchon Ayal Pinkus Frederick H. Pitts
Frank Pfenning Jose Alfredo Portes E. Quintana-Orti
Gregorio Quintana-Orti Beresford Parlett A. Petitet
Andre Platzer Peter Poromaas Claude Quitte
Arthur C. Ralfs Norman Ramsey Anatoly Raportirenko
Guilherme Reis Huan Ren Albert D. Rich
Michael Richardson Jason Riedy Renaud Rioboo
Jean Rivlin Nicolas Robidoux Simon Robinson
Raymond Rogers Michael Rothstein Martin Rubey
Jeff Rutter Philip Santas David Saunders
Alfred Scheerhorn William Schelter Gerhard Schneider
Martin Schoenert Marshall Schor Frithjof Schulze
Fritz Schwarz Steven Segletes V. Sima
Nick Simicich William Sit Elena Smirnova
Jacob Nyffeler Smith Matthieu Sozeau Ken Stanley
Jonathan Steinbach Fabio Stumbo Christine Sundaresan
Klaus Sutner Robert Sutor Moss E. Sweedler
Eugene Surowitz Yong Kiam Tan Max Tegmark
T. Doug Telford James Thatcher Laurent Thery
Balbir Thomas Mike Thomas Dylan Thurston
Francoise Tisseur Steve Toleque Raymond Toy
Barry Trager Themos T. Tsikas Gregory Vanuxem
Kresimir Veselic Christof Voemel Bernhard Wall
Stephen Watt Andreas Weber Jaap Weel
Juergen Weiss M. Weller Mark Wegman
James Wen Thorsten Werther Michael Wester
R. Clint Whaley James T. Wheeler John M. Wiley
Berhard Will Clifton J. Williamson Stephen Wilson
Shmuel Winograd Robert Wisbauer Sandra Wityak
Waldemar Wiwianka Knut Wolf Yanyang Xiao
Liu Xiaojun Clifford Yapp David Yun
Qian Yun Vadim Zhytnikov Richard Zippel
Evelyn Zoernack Bruno Zuercher Dan Zwillinger

Contents

1 Why this effort will not succeed 5

2 Progress Will Occur 11

3 Here is a problem 13

3.1 Proving the Algebra . 13

3.1.1 Defining the Spad syntax . 13

3.1.2 Defining the Spad semantics . 13

3.2 Proving the Logic . 13

3.2.1 Defining the Algebra specifications . 14

3.3 Proving the Lisp . 14

3.4 Proving the Compiler . 14

3.5 Proving to the metal . 14

3.6 Setting up the problem . 14

3.7 Axiom NNI GCD . 15

3.8 Mathematics . 17

3.9 Approaches . 18

4 Theory 21

4.0.1 Hoare’s axioms and gcd proof . 22

4.1 The Division Algorithm . 22

5 GCD in Nuprl by Anne Trostle 25

6 Software Details 27

6.1 Installed Software . 27

v

vi CONTENTS

7 Temporal Logic of Actions (TLA) 29

7.1 The algorithm . 29

7.1.1 Creating a new TLA+ module . 30

7.1.2 Definitions . 30

7.1.3 Constants and variables . 30

7.1.4 The specification . 30

7.1.5 Summary . 31

7.2 A simple proof . 32

7.2.1 The invariant . 32

7.2.2 Checking proofs . 32

7.2.3 Using facts and definitions . 32

7.3 Divisibility Definition . 33

8 COQ proof of GCD 35

8.1 Basics of the Calculus of Constructions . 35

8.1.1 Terms . 35

8.1.2 Judgements . 35

8.1.3 Inference Rules . 36

8.1.4 Defining Logical Operators . 36

8.1.5 Defining Types . 37

8.2 Why does COQ have Prop? . 37

8.3 Source code of COQ GCD Proof . 38

9 LEAN proof of GCD 47

10 Formal Pre- and Post-conditions 55

11 Types and Signatures 57

12 COQ nat vs Axiom NNI 61

12.0.1 Library Coq.Init.Nat . 61

13 Binary Power in COQ by Casteran and Sozeau 67

13.1 On Monoids . 68

13.1.1 Classes and Instances . 69

13.1.2 A generic definition of power . 70

CONTENTS vii

13.1.3 Instance Resolution . 70

13.2 More Monoids . 71

13.2.1 Matrices over some ring . 71

13.3 Reasoning within a Type Class . 72

13.3.1 The Equivalence Proof . 73

13.3.2 Some Useful Lemmas About power . 73

13.3.3 Final Steps . 74

13.3.4 Discharging the Context . 75

13.3.5 Subclasses . 75

14 Proof Tower Layer: C11 using CH2O 77

15 Other Ideas to Explore 79

A The Global Environment 81

B Related work 83

B.1 Overview of related work . 83

B.1.1 Adams [Adam01] . 83

B.1.2 Ballarin [Ball95] . 83

B.1.3 Berger and Schwichtenberg [Berg95] 83

B.1.4 Cardelli [Card85] . 84

B.1.5 Clarke [Clar91] . 84

B.1.6 Crocker [Croc14] . 85

B.1.7 Davenport [Dave02] . 87

B.1.8 Davis [Davi09] . 87

B.1.9 Filliatre [Fill03] . 87

B.1.10 Frege [Freg1891] . 88

B.1.11 Harrison [Harr98, p13] . 88

B.1.12 Hoare [Hoar87] . 89

B.1.13 Jenks [Jenk84b] . 93

B.1.14 Kifer [Kife91] . 93

B.1.15 Meshveliani [Mesh16a] . 93

B.1.16 [Neup13] . 93

B.1.17 Smolka [Smol89a] . 93

viii CONTENTS

B.1.18 Strub, Pierre Yves . 93

B.1.19 Sutor [Suto87] . 96

B.1.20 Wijngaarden [Wijn68, Section 6, p95] 96

B.1.21 McAllester, D. and Arkondas, K., [Mcal96] 96

A Untyped Lambda in Common Lisp 97

Bibliography 99

Index 127

CONTENTS ix

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

CONTENTS 1

Ultimately we would like Axiom to be able to prove that an algorithm generates correct
results. There are many steps between here and that goal, including proving one Axiom
algorithm correct through all of the levels from Spad code, to the Lisp code, to the C code,
to the machine code; a daunting task of its own.

The proof of a single Axiom algorithm is done with an eye toward automating the process.
Automated machine proofs are not possible in general but will exist for known algorithms.

Q: Why bother doing proofs about programming languages? They are
almost always boring if the definitions are right.

A: The definitions are almost always wrong.

If programming is understood not as the writing of instructions for
this or that computing machine but as the design of methods of com-
putation that it is the computer’s duty to execute, then it no longer
seems possible to distinguish the discipline of programming from con-
structive mathematics.
– Per Martin-Löf [Mart79]

Our basic premise is that the ability to construct and modify programs
will not improve without a new and comprehensive look at the entire
programming process. Past theoretical research, say, in the logic of
programs, has tended to focus on methods for reasoning about indi-
vidual programs; little has been done, it seems to us, to develop a
sound understanding of the process of programming – the process by
which programs evolve in concept and in practice. At present, we lack
the means to describe the techniques of program construction and im-
provement in ways that properly link verification, documentation and
adaptability.
– Scherlis and Scott (1983) in [Maso86]

The intrinsically discrete nature of symbol processing makes program-
ming such a tricky job that the application of formal techniques be-
comes a necessity.
– Edsger W. Dijkstra [Dijk83]

The notion of a proof serves not only to organize information, but to
direct the analysis of a problem and produce the necessary insights.
It is as much an analytical tool as it is a final product.
– Bates and Constable [Bate85]

By June 1949 people had begun to realize that it was not so easy to
get programs right as at one time appeared. ... the realization came
over me with full force that a good part of the remainder of my life
was going to be spent in finding errors in my own programs.
– Maurice Wilkes [Wilk85a]

I believe the hard part of building software to be the specification,
design, and testing of this conceptual construct, not the labor of rep-
resenting it and testing the fidelity of the representation. If this is
true, building software will always be hard. There is inherently no
silver bullet.
– Fredrick P. Brooks Jr. [Broo87]

2 CONTENTS

I hold the opinion that the construction of computer programs is a
mathematical activity like the solution of differential equations, that
programs can be derived from their specifications through mathemat-
ical insight, calculation, and proof, using algebraic laws as simple and
elegant as those of elementary arithmetic.
– C. A. R. Hoare [Fetz88]

It might be said that programs are conjectures, while executions are
attempted refutations.
– James Fetzer [Fetz88]

The existence of the computer is giving impetus to the discovery of
algorithms that generate proofs. I can still hear the echos of the col-
lective sigh of relief that greeted the announcement in 1970 that there
is no general algorithm to test for integer solutions to polynomial Dio-
phantine equations; Hilbert’s tenth problem has no solution. Yet,
as I look at my own field, I see that creating algorithms that gener-
ate proofs constitutes some of the most important mathematics being
done. The all-purpose proof machine may be dead, but tightly tar-
geted machines are thriving.
– Dave Bressoud [Bres93]

In contrast to humans, computers are good at performing formal pro-
cesses. There are people working hard on the project of actually for-
malizing parts of mathematics by computer, with actual formally cor-
rect formal deductions. I think this is a very big but very worthwhile
project, and I am confident that we will learn a lot from it. The
process will help simplify and clarify mathematics. In not too many
years, I expect that we will have interactive computer programs that
can help people compile significant chunks of formally complete and
correct mathematics (based on a few perhaps shaky but at least ex-
plicit assumptions) and that they will become part of the standard
mathematician’s working environment.
– William P. Thurston [Thur94]

...constructive mathematics provides a way of viewing the language of
logical propositions as a specification language for programs. An ongoing
thrust of work in computer science has been to develop program speci-
fication languages and formalisms for systematically deriving programs
from specifications. For constructive mathematics to provide such a
methodology, techniques are needed for systematically extracting pro-
grams from constructive proofs. Early work in this field includes that
of Bishop and Constable [Cons98]. What distinguished Martin-Löf ’s
’82 type theory was that the method it suggested for program syn-
thesis was exceptionally simple: a direct correspondence was set up
between the constructs of mathematical logic, and the constructs of a
functional programming language. Specifically, every proposition was
considered to be isomorphic to a type expression, and the proof of
a proposition would suggest precisely how to construct an inhabitant
of the type, which would be a term in a functional programming lan-
guage. The term that inhabits the type corresponding to a proposition
is often referred to as the computational content of the proposition.

CONTENTS 3

– Paul Bernard Jackson [Jack95]

Writing is nature’s way of letting you know how sloppy your thinking
is.
– Guindon [Lamp02]

Mathematics is nature’s way of letting you know how sloppy your
writing is.
– Leslie Lamport [Lamp02]

Type theory is nothing short of a grand unified theory of computation
unified with mathematics so ultimately there is no difference between
math and the code.
– Robert Harper [Harp13]

Informal proofs are algorithms. Formal proofs are code.
– Benjamin Pierce [Pier17]

4 CONTENTS

Chapter 1

Why this effort will not succeed

This is an effort to prove Axiom correct. That is, we wish to prove that the algorithms
provide correct, trustworthy answers.

All prior attempts at combinining a Computer Algebra system and a Proof system raise the
issue that the CAS is untrustworthy.

Axiom tries to encode mathematical algorithms. Unlike other systems it is built on the
scaffold of group theory which provides a sound mathematical foundation. As such, it seems
only reasonable that the algorithms in Axiom can be proven correct, hence the project to
Prove Axiom Correct (PAC).

The PAC project will not succeed. This is perfectly obvious from the outset. But, given the
law of the excluded middle (that is, A ∨ A) is not applicable in this case, the fact that the
project ”does not succeed” does not imply failure. Learning will occur.

That said, we can list quite a few reasons why PAC will not succeed, most of which are
explained in more detail in [Cyph17]. We provide useful names for the likely criticisms
presented there and paraphrase those criticisms applied to our context.

1. Leap of Faith All of these efforts either require making a leap of faith to go from
verified code to a real-world problem, or required the use of an artificially restricted
system in order to function (the NewSpeak approach, create a language in which it
is impossible to think bad thoughts), indicating that formal verification down to the
binary code level is unlikely to be practical in any generally accepted formal methods
sense.

2. Tools for Toy Problems The tools used to support formal methods arose from an
academic research envvironment characterised by a small number of highly skilled users.
The tools were tested on small problems (usually referred to somewhat disparagingly
as “toy problems”) which were targeted more at exercising the tools than exercising
the problem.

3. Opaque Specifications Another factor which complicates the use of formal methods
is that the mathematical methods available to software engineers are often very difficult
to use and plagued by notation which is cumbersome and hard to read and understand.

4. Too Large a Task The national technology base for this level of task is essentially non-
existent. There do not appear to be even 20 people in the world that have undertaken
the essential steps. “In order to get a system with excellent system integrity, you must

5

6 CHAPTER 1. WHY THIS EFFORT WILL NOT SUCCEED

ensure that it is designed and built by geniuses. Geniuses are in short supply” [Blak96].

5. False Axioms Problems occur when a proof has to be manually augmented with
“self-vidient” truths which sometimes turn out to be false and end up misguiding the
prover.

6. Intellectual Cost Requiring a proof of an algorithm adds to the already outsized
cost of creating the algorithm in Axiom, given the steep intellectual hill such a system
already presents.

7. Ripple Cost Multiple layers of abstraction are required to go from a proof to its
implementation and a change in any of the layers can result in a ripple effect as changes
propagate. If a change manages to propagate its way into a formally proven section,
portions of, or possibly all of, the proof might need to be redone.

8. Informal Implementation Details Current techniques rarely reach down any fur-
ther than the high-level specificaiton resulting in large amounts of time and energy
being poured into producing a design specification which is void of any implementa-
tion details.

9. Specification Mismatch Formal proofs that a specification is correct don’t show that
the assumptions made in the proof are correct in the actual physical system. If the
code which is supposed to implement the formal specification doesn’t quite conform to
it or the compiler can’t produce an executable which quite matches what was intended
in the code then no amount of formal proving will be able to guarantee the execution
behaviour of the code.

10. Natural / Formal Mismatch Natural language descriptions of what is intended may
mismatch the formal language descriptions. In many cases “common sense” assump-
tions come into play which are never formally stated.

11. Specification Flaws The code may implement a specification exactly as stated but
the specification can be flawed.

12. Mis-implemented Specifications The specification may be correct but the imple-
mentation does not match the specification.

13. Specification Narrowing The specification language may not be sufficient to state all
of the required concepts so a “narrowing” of the specification is made to approximate
the intent.

14. Specification Widening The specification language may generalize the required con-
cepts so a “widening” of the specification is made beyond the required intent.

15. Specification Impedence Mismatch The specification language does not cover the
concepts in the domain of interest, requiring considerable effort to “model” the domain.

16. Specification Blindness The specification writers can’t take into account every even-
tuality which will arise. As a result, an implemention of a specification doesn’t just
implement it, it alters it in order to fit real-world constraints which weren’t foreseen
by the original authors of the specification.

17. Contradictory Proofs If the system is inconsistent, it would be possible to find two
contradictory proofs. It is likely that such an inconsistency will not be detected and
only one of the proofs will be accepted since the other one is never generated.

18. Likely to be Ignored There are thousands of proofs published, most of which are
“write only” and are never checked. This is likely to be the case with Axiom’s proofs.

7

19. Proven Programs are Wrong It is possible to prove a program correct and still get
wrong results. Testing is still required.

20. Proofs are a Social Process Axiom’s “social circle” is vanishingly small.

21. Chicken and Egg Do proofs follow from programs or programs follow from proofs?

22. Boiling the Ocean The task is much too large.

23. MetaTheory Cost There is a cost to developing theories for new data types; these
are unnecessary “meta” costs.

24. Partial Functions Not all of the functions are total so it is difficult to prove theorems
about them.

25. Undecidable Theories Some theories are known to be undecidable so there will be
problems with their proofs.

Fenton [Fent93] states that there is no hard evidence to show that

1. formal methods have been used cost effectively on a real safety-critical system devel-
opment

2. the use of formal methods can deliver reliability more cost effectively than traditional
structured methods with enhanced testing

3. sufficient numbers of either developers or users can ever be trained to make proper use
of formal methods

Calude, et al. [Calu07] take a quite different attack on the idea of proving and programming,
specifically

1. Theorems (in mathematics) correspond to algorithms and not programs (in computer
science); algorithms are subject to mathematical proofs (for example correctness)

2. The role of proof in mathematical modeling is very small: adequacy is the main issue

3. Programs (in computer science) correspond to mathematical models. They are not
subject to proofs, but to an adequacy and relevance analysis; in this type of analysis,
some proofs may appear. Correctness proofs in computer science (if any) are not
cost-effective.

4. Rigour in programming is superior to rigour in mathematical proofs.

5. Programming gives mathematics a new form of understanding

6. Although the Hilbertian notion of proof has few chances to change, future proofs will be
of various types and will play different roles, and their truth will be checked differently.

7. In general, correctness is undecidable

8. for most non-trivial cases, correctness is a monumental task which gives an added
confidence at a disproportionate cost.

Still another attack comes from Hoare [Hoar96] which states that ”By surveying current
software engineering practice, this paper reveals that the techniques employed to achieve
reliability are little different from those which have proved effective in all other branches of
modern engineering: rigorous management of procedures for design inspection and review;
quality assurance based on a wide range of targeted tests; continuous evolution by removal
of errors from products already in widespread use; and defensive programming, among other
forms of deliberate over-engineering. Formal methods and proof play a small direct role in
large scale programming; but they do provide a conceptual framework and basic understand-

8 CHAPTER 1. WHY THIS EFFORT WILL NOT SUCCEED

ing to promote the best of current practice, and point directions for future improvement.”

Fetzer [Fetz88] adds ”The notion of program verification appears to trade upon an equvo-
cation. Algorithms, as logical structures, are appropriate subjects for deductive verification.
Programs, as causal models of those structures, are not. The success of program verifi-
cation as a generally applicable and completely reliable method for guaranteeing program
performance is not even a theoretical possibility.”

An unnamed letter writer to the CACM says ”It is time somebody said it – loud and clear
– the formal approach to software verification does not work now and probably never will.”
[Glas02]

DeMillo et al. [Demi79] says ”It is argued that formal verifications of programs, no matter
how obtained, will not play the same key role in the development of computer science and
software engineering as proofs do in mathematics. Furthermore the absence of continuity,
the inevitability of change, and the complexity of specification of significantly many real
programs make the formal verification process difficult to justify and manage. It is felt that
ease of formal verification should not dominate program language design.”,

DeMillo argues that proofs are social constructs. ”Mathematiical proofs increase our confi-
dence in the truth of mathematical statements only after they have been subjected to the
social mechanisms of the mathematical community. These same mechanisms doom the so-
called proofs of software, the long formal verifications that correspond, not to the working
mathematical proof, but to the imaginary logical structure that the mathematician conjures
up to describe his feeling of belief. Verifications are not messages, a person who ran out into
the hall to communicate his latest verification would rapidly find himself a social pariah.
Verifications cannot really be read; a reader can flay himself through one of the shorter ones
by dint of heroic effort, but that’s not reading. Being unreadable and – literally – unspeak-
able, verifications cannot be internalized, transformed, generalized, used, connected to other
disciplines, and eventually incorporated into a community consciousness. They cannot ac-
quire credibility gradually, as a mathematical theorem does; one either believes them blindly,
as a pure act of faith, or not at all.”

And still more with ”There is a fundamental logical objection to verification, an objection
on its own ground of formalistic rigor. Since the requirement for a program is informal and
the program is formal, there must be a transition, and the transition itself must necessarily
be informal.”

And ”So, having for the moment suspended all rational disbelief, let us suppose that the
programmer gets the message “VERIFIED.” And let us suppose further that the message
does not result from a failure on the part of the verifying system. What does the programmer
know? He knows that his program is formally, logically, provably, certifiably correct. He
does not know, however, to what extent it is reliable, dependable, trustworthy, safe; he does
not know within what limits it will work; he does not know what happens when it exceeds
those limits. And yet he has that mystical stamp of approval “VERIFIED.””

Manna and Waldinger [Mann78] mentions

1. We can never be sure that the specifications are correct

2. No verification system can verify every correct program

3. We can never be certain that a verification system is correct

Hall [Hall90] presents 7 myths of formal methods.

1. Formal methods can guarantee that software is perfect.

9

2. They work by proving that programs are correct.

3. Only highly critical systems benefit from their use.

4. They involve complex mathematics.

5. They increase the cost of development.

6. They are incomprehensible to clients.

7. Nobody uses them for real projects.

Bowen and Hinchey [Bowe95] follow up with 7 more myths.

1. Formal methods delay the developent process

2. Formal methods lack tools

3. Formal methods replace traditional engineering design methods

4. Formal methods only apply to software

5. Formal methods are unnecessary

6. Formal methods are not supported

7. Formal methods people always use formal methods

10 CHAPTER 1. WHY THIS EFFORT WILL NOT SUCCEED

Chapter 2

Progress Will Occur

At the very lowest level there have been some truly impressive steps toward formal verification
of low-level implmentation details.

Reid [Reid17] has created and verified a huge specification (over 1/2 Million nodes) of the
ARM processor. The specification passes almost every test in their huge (11k) test suite.
Using the specification with an SMT Solver allows the ability to do things like ask what
input will give the known output, for example.

Chlipala has done both machine-level [Chli17a] and higher-level [Chli17] formal proofs. He
claims that within 10 years it will be normal to have deployed computer systems with top-
to-bottom correctness proofs which were checked algorithmically.

11

12 CHAPTER 2. PROGRESS WILL OCCUR

Chapter 3

Here is a problem

Axiom has a domain-specific language for mathematical computation called Spad. This is
implemented in Common Lisp. Our version of Common Lisp compiles to C. The C code is
then compiled to machine code. The machine code is executed by a physical machine.

There are various attacks on each of these areas. We will be addressing them all at some
point, from the mathematical specification, through the Spad code all the way down to the
hardware timing signals.

One useful technique to exploit is mentioned by Myreen, Slind, and Gordon [Myre09a]. They
’forward compile’ the code to f , collect the result as f ′, and then prove the f = f ′. This
proof is sufficient to show that the compile step is correct.

3.1 Proving the Algebra

3.1.1 Defining the Spad syntax

3.1.2 Defining the Spad semantics

Floyd [Floy67], Back [Back81], Caldwell [Cald97], Filliatre [Fill03], Filliatre and Paskevich
[Fill13]

3.2 Proving the Logic

Proving programs correct involves working with a second programming language, the proof
language, that is well-founded on some theory. Proofs (programs), can be reduced (compiled)
in this new language to the primitive constructs (machine language).

The ideal case would be that the programming language used, such as Spad, can be isomor-
phic, or better yet, syntactically the same as the proof language. Unfortunately that is not
(yet?) the case with Spad.

The COQ system language, Gallina, is the closest match to Spad.

Davis [Davi09], Myreen and Davis [Myre11], Myreen and Davis [Myre14], Davis and Myreen

13

14 CHAPTER 3. HERE IS A PROBLEM

[Davi15]

3.2.1 Defining the Algebra specifications

Talpin and Jouvelot [Talp92]

3.3 Proving the Lisp

Myreen [Myre12]

3.4 Proving the Compiler

Myreen [Myre10]

3.5 Proving to the metal

Myreen and Gordon [Myre09], Myreen, Slind, and Gordon [Myre09a]

Domipheus [Domi18] provides a VHDL (hardware description language) CPU which provides
the actual electrical timing of signals all the way up to a machine language which consists of

OPERATION FUNCTION
Add D = A + B
Substrct D = A - B
Bitwise Or D = A or B
Bitwise Xor D = A xor B
Bitwise And D = A and B
Bitwise Not B = not A
Read D = Memory[A]
Write Memory[A] = B
Load D = 8-bit immediate value
Compare D = cmp(A,B)
Shift Left D = A << B
Shift Right D = A >> B
Jump/Branch PC = A Register or Immediate Value
Jump/Brance conditionally PC = Register if (condition) else nop

3.6 Setting up the problem

The GCD function will be our first example of a proof.

The goal is to prove that Axiom’s implementation of the Euclidean GCD algorithm is correct.

We need to be clear about what is to be proven. In this case, we need to show that, given
GCD(a,b),

1. GCD is a function from a× b⇒ c

3.7. AXIOM NNI GCD 15

2. a and b are elements of the correct type

3. c, the result, is the correct type

4. the meaning of divisor

5. the meaning of a common divisor

6. GCD terminates

We next need to set up the things we know in ”the global environment”, generally referred
to as E in Coq.

Axiom’s GCD is categorically defined to work over any Euclidean domain. This means that
the axioms of a Euclidean domain are globally available. In fact, this is stronger than we
need since

• commutative rings ⊂ integral domains

• integral domains ⊂ integrally closed domains

• integrally closed domains ⊂ GCD domains

• GCD domains ⊂ unique factorization domains

• unique factorization domains ⊂ principal ideal domains

• principal ideal domains ⊂ Euclidean domains

A Euclidean function on R is a function f from R
{0} to the non-negative integers satisfying the following fundamental division-with-remainder
property [WikiED]:

D(a, b) = set of common divisors of a and b.

gcd(a, b) = maxD(a, b)

3.7 Axiom NNI GCD

NonNegativeInteger inherits gcd from Integer up the “add chain” since it is a subtype of
Integer. Integer has EuclideanDomain as an ancestor [Book103]:

(1) -> getAncestors "Integer"

(1)

{AbelianGroup, AbelianMonoid, AbelianSemiGroup, Algebra, BasicType,

BiModule, CancellationAbelianMonoid, CharacteristicZero, CoercibleTo,

CombinatorialFunctionCategory, CommutativeRing, ConvertibleTo,

DifferentialRing, EntireRing, EuclideanDomain, GcdDomain,

IntegerNumberSystem, IntegralDomain, LeftModule, LeftOreRing,

LinearlyExplicitRingOver, Module, Monoid, OpenMath, OrderedAbelianGroup,

OrderedAbelianMonoid, OrderedAbelianSemiGroup,

OrderedCancellationAbelianMonoid, OrderedIntegralDomain, OrderedRing,

OrderedSet, PatternMatchable, PrincipalIdealDomain, RealConstant,

RetractableTo, RightModule, Ring, Rng, SemiGroup, SetCategory, StepThrough,

UniqueFactorizationDomain}

Type: Set(Symbol)

From category EuclideanDomain (EUCDOM) we find the implementation of the Euclidean
GCD algorithm [Book102]:

16 CHAPTER 3. HERE IS A PROBLEM

gcd(x,y) == --Euclidean Algorithm

x:=unitCanonical x

y:=unitCanonical y

while not zero? y repeat

(x,y):= (y,x rem y)

y:=unitCanonical y -- this doesn’t affect the

-- correctness of Euclid’s algorithm,

-- but

-- a) may improve performance

-- b) ensures gcd(x,y)=gcd(y,x)

-- if canonicalUnitNormal

x

The unitCanonical function comes from the category IntegralDomain (INTDOM) where
we find:

unitNormal: % -> Record(unit:%,canonical:%,associate:%)

++ unitNormal(x) tries to choose a canonical element

++ from the associate class of x.

++ The attribute canonicalUnitNormal, if asserted, means that

++ the "canonical" element is the same across all associates of x

++ if \spad{unitNormal(x) = [u,c,a]} then

++ \spad{u*c = x}, \spad{a*u = 1}.

unitCanonical: % -> %

++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonical}.

implemented as

UCA ==> Record(unit:%,canonical:%,associate:%)

if not (% has Field) then

unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition

unitCanonical(x) == unitNormal(x).canonical -- always true

recip(x) == if zero? x then "failed" else _exquo(1$%,x)

unit?(x) == (recip x case "failed" => false; true)

if % has canonicalUnitNormal then

associates?(x,y) ==

(unitNormal x).canonical = (unitNormal y).canonical

else

associates?(x,y) ==

zero? x => zero? y

zero? y => false

x exquo y case "failed" => false

y exquo x case "failed" => false

true

Coq proves the following GCD function:

Fixpoint gcd a b :=

match a with

| 0 => b

| S a’ => gcd (b mod (S a’)) (S a’)

end.

This can be translated directly to working Spad code:

GCD(x:NNI,y:NNI):NNI ==

zero? x => y

GCD(y rem x,x)

3.8. MATHEMATICS 17

with the test case results of:

(1) -> GCD(2415,945)

Compiling function mygcd2 with type (NonNegativeInteger,

NonNegativeInteger) -> NonNegativeInteger

(1) 105

Type: PositiveInteger

(2) -> GCD(0,945)

(2) 945

Type: PositiveInteger

(3) -> GCD(2415,0)

(3) 2415

Type: PositiveInteger

(4) -> GCD(17,15)

(4) 1

Type: PositiveInteger

3.8 Mathematics

From Buchberger [Buch97],

Define “divides”
t|a⇐⇒ ∃u(t · u = a)

Define “greatest common divisor”

GCD(a, b) = ∀t max(t|a ∧ t|b)

Theorem:
(t|a ∧ t|b)⇐⇒ t|(a− b) ∧ t|b

Euclid’s Algorithm
a > b⇒ GCD(a, b) = GCD(a− b, b)

By the definition of GCD we need to show that

∀t max(t|a ∧ t|b) = ∀t max(t|(a− b) ∧ t|b)

Thus we need to show that

(t|a ∧ t|b)⇐⇒ (t|(a− b) ∧ t|b)

Let t be arbitrary but fixed and assume

(t|a ∧ t|b) (3.1)

We have to show
t|(a− b) (3.2)

18 CHAPTER 3. HERE IS A PROBLEM

and
t|b (3.3)

Equation 3.3 follows propositionally. For equation 3.2, by definition of “divides”, we have to
find a w such that

t · w = a− b (3.4)

From 3.1, by definition of “divides”, we know that for certain u and v

t · u = a

and
t · v − b

Hence,
a− b = t · u− t · v

But
t · u− t · v = t · (u− v)

So we need to find
w = u− v

and
Find w such that t · u− t · v = t · w

3.9 Approaches

There are several systems that could be applied to approach the proof.

The plan is to initially look at Coq and ACL2. Coq seems to be applicable at the Spad level.
ACL2 seems to be applicable at the Lisp level. Both levels are necessary for a proper proof.

Coq is very close to Spad in spirit so we can use it for the high-level proofs.

ACL2 is a Lisp-level proof technology which can be used to prove the Spad-to-Lisp level.

There is an LLVM to ACL2 translator which can be used to move from the GCL Lisp level
to the hardware since GCL compiles to C. In particular, the ”Vellvm: Verifying the LLVM”
[Zdan14] project is important.

Quoting from Hardin [Hard14]

LLVM is a register-based intermediate in Static Single Assignment (SSA) form.
As such, LLVM supports any number of registers, each of which is only assigned
once, statically (dynamically, of course, a given register can be assigned any
number of times). Appel has observed that “SSA form is a kind of functional
programming”; this observation, in turn, inspired us to build a translator from
LLVM to the applicative subset of Common Lisp accepted by the ACL2 theo-
rem prover. Our translator produces an executable ACL2 specification that is
able to efficiently support validation via testing, as the generated ACL2 code
features tail recursion, as well as in-place updates via ACL2’s single-threaded
object (stobj) mechanism. In order to ease the process of proving properties

3.9. APPROACHES 19

about these translated functions, we have also developed a technique for reason-
ing about tail-recursive ACL2 functions that execute in-place, utilizing a formally
proven “bridge” to primitive-recursive versions of those functions operating on
lists.

Hardin [Hard13] describes the toolchain thus:

Our translation toolchain architecture is shown in Figure 1. The left side of the
figure depicts a typical compiler frontend producing LLVM intermediate code.
LLVM output can be produced either as a binary “bitcode” (.bc) file, or as text
(.ll file). We chose to parse the text form, producing an abstract syntax tree
(AST) representation of the LLVM program. Our translator then converts the
AST to ACL2 source. The ACL2 source file can then be admitted into an ACL2
session, along with conjectures that one wishes to prove about the code, which
ACL2 processes mostly automatically. In addition to proving theorems about
the translated LLVM code, ACL2 can also be used to execute test vectors at
reasonable speed.

Note that you can see the intermediate form from clang with

clang -O4 -S -emit-llvm foo.c

Both Coq and the Hardin translator use OCAML [OCAM14] so we will have to learn that
language.

20 CHAPTER 3. HERE IS A PROBLEM

Chapter 4

Theory

The proof of the Euclidean algorithm has been known since Euclid. We need to study an
existing proof and use it to guide our use of Coq along the same lines, if possible. Some of
the “obvious” natural language statements may require Coq lemmas.

From WikiProof [Wiki14a] we quote:

Let
a, b ∈ Z

and a ̸= 0 or b ̸= 0.

The steps of the algorithm are:

1. Start with (a, b) such that |a| ≥ |b|. If b = 0 then the task is complete and the GCD is
a.

2. if b ̸= 0 then you take the remainder r of a/b.

3. set a← b, b← r (and thus |a| ≥ |b| again).
4. repeat these steps until b = 0

Thus the GCD of a and b is the value of the variable a at the end of the algorithm.

The proof is:

Suppose
a, b ∈ Z

and aorb ̸= 0.

From the division theorem, a = qb+ r where 0 ≤ r ≤ |b|
From GCD with Remainder, the GCD of a and b is also the GCD of b and r.

Therefore we may search instead for the gcd(b, r).

Since |r| ≥ |b| and
b ∈ Z

, we will reach r = 0 after finitely many steps.

At this point, gcd(r, 0) = r from GCD with Zero.

We quote the Division Theorem proof [Wiki14b]:

21

22 CHAPTER 4. THEORY

For every pair of integers a, b where b ̸= 0, there exist unique integers q, r such that a = qb+r
and 0 ≤ r ≤ |b|.

4.0.1 Hoare’s axioms and gcd proof

From Hoare [Hoar69]

A1 x+ y = y + x addition is commutative
A2 x× y = y × x multiplication is commutative
A3 (x+ y) + z = x+ (y + z) addition is associative
A4 (x× y)× z = x× (y × z) multiplication is associative
A5 x× (y + z) = x× y + x× z multiplication distributes through addition
A6 y ≤ x→ (x− y) + y = x addition cancels subtraction
A7 x+ 0 = x
A8 x× 0 = 0
A9 x× 1 = x

D0 Axiom of Assignment
⊢ P0{x := f}P

where

• x is a variable identifier

• f is an expression

• P0 is obtained from P by substituting f for all occurrences of x

4.1 The Division Algorithm

From Judson [Juds15],

An Application of the Principle of Well-Ordering that we will use often is the division
algorithm.

Theorem 2.9 Division Algorithm Let a and b be integers, with b > 0. Then there exists
unique integers q and r such that

a = bq + r

where 0 ≤ r < b.

Proof

Let a and b be integers. If b = ak for some integer k, we write a|b. An integer d is called
a common divisor of a and b if d|a and d|b. The greatest common divisor of integers a and
b is a positive integer d such that d is a common divisor of a and b and if d

′
is any other

common divisor of a and b, then d
′ |d. We write d = gcd(a, b); for example, gcd(24, 36) = 12

and gcd(120, 102) = 6. We say that two integers a and b are relatively prime if gcd(a, b) = 1.

Theorem 2.10 Let a and b be nonzero integers. Then there exist integers r and s such that

gcd(a, b) = ar + bs

Furthermore, the greatest common divisor of a and b is unique.

Proof

4.1. THE DIVISION ALGORITHM 23

Corollary 2.11 Let a and b be two integers that are relatively prime. Then there exist
integers r and s such that

ar + bs = 1

The Euclidean Algorithm

Among other things, Theorem 2.10 allows us to compute the greatest common divisor of two
integers.

Example 2.1.2 Let us compute the greatest common divisor of 945 and 2415. First observe
that

2415 = 945 · 2 + 525
945 = 525 · 1 + 420
525 = 420 · 1 + 105
420 = 105 · 4 + 0

Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and 105 divides 2415.
Hence, 105 divides both 945 and 2415. If d were another common divisor of 945 and 2415,
then d would also have to divide 105. Therefore, gcd(945, 2415) = 105.

If we work backward through the above sequence of equations, we can also obtain numbers
r and s such that

945r + 2415s = 105

105 = 525 + (−1) · 420
105 = 525 + (−1) · [945 + (−1) · 525]
105 = 2 · 525 + (−1) · 945
105 = 2 · [2415 + (−2) · 945] + (−1) · 945
105 = 2 ∗ 2415 + (−5) · 945

So r = −5 and s − 2. Notice the r and s are not unique, since r = 41 and s = −16 would
also work.

To compute gcd(a, b) = d, we are using repeated divisions to obtain a decreasing sequence
of positive integers r1 > r2 > . . . > rn = d; that is

b = aq1 + r1
a = r1q2 + r2
r1 = r2q3 + r3
...

rn−2 = rn−1qn + rn
rn−1 = rnqn+1

To find r and s such that ar+ bs = d, we begin with the last equation and substitute results
obtained from the previous equations:

d = rn
d = rn−2 − rn−1qn
d = rn−2 − qn(rn−3 − qn−1rn−2

d = −qnrn−3 + (1 + qnqn−1)rn−2

...
d = ra+ sb

24 CHAPTER 4. THEORY

Chapter 5

GCD in Nuprl by Anne Trostle

Quoted from [Tros13]:

Here we show how to use the Nuprl proof assistant to develop an existence proof for the
greatest common divisor of two natural numbers. We then take the proof a step further and
show that the greatest common divisor, or GCD, can be calculated as a linear combination
of the two numbers. For each proof, we also show that Nuprl can extract a program from
the proof that can be used to perform calculations.

The greatest common divisor is defined in Nuprl as follows:

Defintion 1: gcd p

GCD(m : n : g) == (g|m) ∧ (g|n) ∧ (∀z : Z.(((z|m) ∧ (z|m))→ (z|g)))
Defintion 2: divides

b|a == ∃c : Z.(a = (b ∗ c))
In words, Definition 1 means that g is the greatest common divisor of m and n when g
divides both m and n, and any other common divisor of m and n divides g.

To prove that the GCD exists, we are going to use Euclid’s algorithm, whicc is based on the
property that for two integers m and n, the GCD of m and n is equivalent to the GCD of n
and the remainder from m÷ n:

Lemma 1: div rem gcd anne

∀m : Z. ∀n : Z−0, ∀g : Z.(GCD(m;n; g) ⇐⇒ GCD(n;m rem n; g))

Another useful fact about the GCD is that the GCD of an integer z and 0 is z. A proof of
this property can be done by showing that each part of Definition 1 is satisfied.

Lemma 2: gcd p zero

∀z : Z. GCD(z; 0; z)

From these properties we can see a method for calculating the greatest common divisor of
two numbers: continue finding remainders until you reach 0 and then use the fact that the
GCD of an integer z and 0 is z. Since the GCD stays the same as you reduce the terms,
z is also the GCD of the original pair of numbers. This is Euclid’s algorithm. Here is an
example of how it works, using 18 and 12:

25

26 CHAPTER 5. GCD IN NUPRL BY ANNE TROSTLE

GCD(18;12;g) = GCD(12;18 rem 12;g)
= GCD(12;6;g
= GCD(6;12 rem 6;g)
= GCD(6;0;g)
→ g = 6

Using this idea we can not only prove that the GCD exists but we can also construct a
method for actually computing the GCD. A great feature of Nuprl is that when we run
a constructive existence proof, we can extract a program from it and use the program to
perform calculations. In the next section we show in detail how to develop a constructive
existence proof for the GCD using induction. Induction proofs often to hand-in-hand with
recursive programs, and sure enough, a very clean recursive program can be extracted from
the proof, and this program follows exactly the method we just came up with:

λn.letrcgcd(n) =
λm.ifn = 0thenm
else(gcd(mremn)n)
ingcd(n)

The program here is an example of currying: a function of n that results in another function
which then uses m. This isn’t necessarily intuitive, since when we think of the GCD we
think of a function of a pair (or more) of numbers, so we might expect the program to start
with something like “gcd(m,n) = . . .”. But the proof that follows uses natural induction
on a single variable and flows very nicely, giving reason to prefer the curried function here.
To develop a proof that produces a function of the pair (m,n) would require induction on
the pair itself which isn’t as intuitive or easy to understand as natural induction on a single
variable.

Chapter 6

Software Details

6.1 Installed Software

Install CLANG, LLVM

http://llvm.org/releases/download.html

Install OCAML

sudo apt-get install ocaml

An OCAML version of gcd would be written

let rec gcd a b = if b = 0 then a else gcd b (a mod b)

val gcd : int -> int -> int = <fun>

27

28 CHAPTER 6. SOFTWARE DETAILS

Chapter 7

Temporal Logic of Actions
(TLA)

Sloppiness is easier than precision and rigor – Leslie Lamport [Lamp14a]

Leslie Lamport [Lamp14] [Lamp16] on 21st Century Proofs.

A method of writing proofs is described that makes it harder to prove things that are not
true. The method, based on hierarchical structuring, is simple and practical. The author’s
twenty years of experience writing such proofs is discussed.

Lamport points out that proofs need rigor and precision. Structure and Naming are impor-
tant. Every step of the proof names the facts it uses.

Quoting from [Lamp16]:

Broadly speaking, a TLA+ proof is a collection of claims, arranged in a hierarchical structure
which we describe below, where each claim has an assertion that is either unjustified or
justified by a collection of cited facts. The purpose of TLAPS is to check the user-provided
proofs of theorems, that is, to check that the hierarchy of claims indeed establishes the truth
of the theorem if the claims were true, and then to check that the assertion of every justified
claim indeed is implied by its cited facts. If a TLA+ theorem has a proof with no unjustified
claims, then, as a result of checking the proof, TLAPS verifies the truth of the theorem.

7.1 The algorithm

The well-known Euclidean algorithm can be written in the PlusCal language as follows:

--algorithm Euclid {

variables x \in 1..M, y \in 1..N, x0 = x, y0 = y;

{

while (x # y) {

if (x < y) { y := y - x; }

else { x := x-y; }

};

assert x = GCD(x0, y0) /\ y = GCD(x0, y0)

}

29

30 CHAPTER 7. TEMPORAL LOGIC OF ACTIONS (TLA)

The PlusCal translator translates this algorithm into a TLA+ specification that we could
prove correct. However, in this tutorial, we shall write a somewhat simpler specification of
Euclid’s algorithm directly in TLA+.

7.1.1 Creating a new TLA+ module

In order to get the definitions of arithmetic operators (+, −, etc.), we shall make this
specification extend the Integers standard module.

--------------------- Module Euclid ----------------------

EXTENDS Integers

7.1.2 Definitions

We shall then define the GCD of two integers. For that purpose, let us define the predicate
“p divides q” as follows: p divides q iff there exists some integer d in the interval 1..q such
that q is equal to p times d.

p | q == \E d \in 1..q : q = p * d

We then define the set of divisors of an integer q as the sets of integers which both belong
to the interval 1..q and divide q:

Divisors(q) == {d \in 1..q : d | q}

We define the maximum of a set S as one of the elements of this set which is greater than
or equal to all the other elements:

Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y

And finally, we define the GCD of two integers p and q to be the maximum of the intersection
of Divisors(p) and Divisors(a):

GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))

For convenience, we shall also define the set of all positive integers as:

Number = Nat \ {0}

7.1.3 Constants and variables

We then define the two constants and two variables needed to describe the Euclidean algo-
rithm, where M and N are the values whose GCD is to be computed:

CONSTANTS M, N

VARIABLES x, y

7.1.4 The specification

We define the initial state of the Euclidean algorithm as follows:

Init == (x = M) /\ (y = N)

In the Euclidean algorithm, two actions can be performed:

• set the value of y to y - x if x < y

7.1. THE ALGORITHM 31

• set the value of x to x - y if x > y

These actions are again written as a definition of Next, which specifies the next-state relation.
In TLA+, a primed variable refers to its value at the next state of the algorithm.

Next == \/ /\ x < y

/\ y’ = y - x

/\ x’ = x

\/ /\ y < x

/\ x’ = x-y

/\ y’ = y

The specification of the algorithm asserts that the variables have the correct initial values
and, in each execution step, either a Next action is performed or x and y keep the same
values:

Spec == Init /\ [][Next]_<<x,y>>

(For reasons that are irrelevant to this algorithm, TLA specifications always allow stuttering
steps that leave all the variables unchanged.)

We want to prove that the algorithm always satisfies the following property:

ResultCorrect == (x = y) => x = GCD(M, N)

Hence we want to prove the following theorem named Correctness:

THEOREM Correctness == Spec => []ResultCorrect

7.1.5 Summary

--------------------- Module Euclid ----------------------

EXTENDS Integers

p | q == \E d \in 1..q : q = p * d

Divisors(q) == {d \in 1..q : d | q}

Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y

GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))

Number == Nat \ {0}

CONSTANTS M, N

VARIABLES x, y

Init == (x = M) /\ (y = N)

Next == \/ /\ x < y

/\ y’ = y - x

/\ x’ = x

\/ /\ y < x

/\ x’ = x-y

/\ y’ = y

Spec == Init /\ [][Next]_<<x,y>>

ResultCorrect == (x = y) => x = GCD(M,N)

THEOREM Correctness == Spec => []ResultCorrect

32 CHAPTER 7. TEMPORAL LOGIC OF ACTIONS (TLA)

7.2 A simple proof

7.2.1 The invariant

Intuitively, the theorem Correctness holds because the implementation guarantees the fol-
lowing invariant

InductiveInvariant == /\ x \in Number

/\ y \in Number

/\ GCD(x, y) = GCD(M, N)

That is, InductiveInvariant holds for the initial state (i.e., the state specified by Init)
and is preserved by the next-state relation [Next] << x, y >>

7.2.2 Checking proofs

First we need to assume that constants M and N are not equal to zero

ASSUME NumberAssumption == M \in Number /\ N \in Number

Let us then prove that InductiveInvariant holds for the initial state.

THEOREM InitProperty == Init => InductiveInvariant

To check whether TLAPS can prove that theorem by itself, we declare its proof obvious.

THEOREM InitProperty == Init => InductiveInvariant

OBVIOUS

We now ask TLAPS to prove that theorem. But TLAPS does not know how to prove the
proof obligation corresponding to that proof. It prints that obligation and reports failures
to three backends, Zenon, Isabelle, and SMT. The default behavior of TLAPS is to send
obligations first to an SMT solver (by default CVC3), then if that fails to the automatic
prover Zenon, then if Zenon fails to Isabelle (with the tactic “auto”).

7.2.3 Using facts and definitions

The obligation cannot be proved because TLAPS treats the symbols Init and InductiveInvariant
as opaque identifiers unless it is explicitly instructed to expand their definitions using the
directive DEF. The main purpose of this treatment of definitions is to make proof-checking
tractable, because expanding definitions can arbitrarily increase the size of expressions. Ex-
plicit use of definitions is also a good hint to the (human) reader to look only at the listed
definitions to understand a proof step. In that precise case, we can ask TLAPS to expand
definitions of Init and InductiveInvariant, by replacing the proof OBVIOUS by the proof
BY DEF Init, InductiveInvariant. In the obligations sent to the backends, the definitions
of Init and InductiveInvariant have been expanded.

Unfortunately, none of the back-ends could prove that obligation. As with definitions, we
have to specify which facts are usable. In this case, we have to make the fact NumberAssumption
usable by changing the proof to

THEOREM InitProperty == Init => InductiveInvariant

BY NumberAssumption DEF Init, InductiveInvariant

The general form of a BY proof is:

BY e1, . . . , em DEF d1, . . . , dn

7.3. DIVISIBILITY DEFINITION 33

which claims that the assertion follows by assuming e1, . . . , em and expanding the definitions
d1, . . . , dn. It is the job of TLAPS to then check this claim, and also to check that the cited
facts e1, . . . , em are indeed true.

Finally, SMT succeeds in proving that obligation.

--------------------- Module Euclid ----------------------

EXTENDS Integers

p | q == \E d \in 1..q : q = p * d

Divisors(q) == {d \in 1..q : d | q}

Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y

GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))

Number == Nat \ {0}

CONSTANTS M, N

VARIABLES x, y

Init == (x = M) /\ (y = N)

Next == \/ /\ x < y

/\ y’ = y - x

/\ x’ = x

\/ /\ y < x

/\ x’ = x-y

/\ y’ = y

Spec == Init /\ [][Next]_<<x,y>>

ResultCorrect == (x = y) => x = GCD(M,N)

InductiveInvariant == /\ x \in Number

/\ y \in Number

/\ GCD(x, y) = GCD(M, N)

ASSUME NumberAssumption == M \in Number /\ N \in Number

THEOREM InitProperty == Init => InductiveInvariant

BY NumberAssumption DEF Init, InductiveInvariant

THEOREM Correctness == Spec => []ResultCorrect

7.3 Divisibility Definition

In Shoup [Sho08] we find the divisibility definition.

Given the integers, a and b

a divides b =⇒ az = b for some z

so or all a,b, and c
a|a, 1|a, and a|0

because a · 1 = a, 1 · a = a, and a · 0 = 0

0|a ⇐⇒ a = 0

34 CHAPTER 7. TEMPORAL LOGIC OF ACTIONS (TLA)

a|b ⇐⇒ −a|b ⇐⇒ a| − b

a|b and a|c =⇒ a|(b+ c)

a|b and b|c =⇒ a|c

a|b and b ̸= 0 =⇒ 1 ≤ |a| ≤ |b|

az = b ̸= 0 and a ̸= 0 and z ̸= 0 =⇒ |a| ≥ 1 and |z| ≥ 1

a|b and b|a =⇒ a = ±b

proof:
a|b =⇒ |a| ≤ |b|; b|a =⇒ |b| ≤ |a|; therefore |a| = |b| =⇒ a = ±b

a|1 ⇐⇒ a = ±1

Chapter 8

COQ proof of GCD

8.1 Basics of the Calculus of Constructions

Coquand [Coqu86] [Wiki17] defines the Calculus of Constructions which can be considered
an extension of the Curry-Howard Isomorphism. The components are

8.1.1 Terms

A term in the calculus of constructions is constructed using the following rules:

• T is a term (also called Type)

• P is a term (also called Prop, the type of all propositions)

• Variables (x, y, . . .) are terms

• if A and B are terms, then so are

– (A,B)

– (λx : A,B)

– (∀x : A,B)

The calculus of constructions has five kinds of objects:

1. proofs, which are terms whose types are propositions

2. propositions, which are also known as small types

3. predicates, which are functions that return propositions

4. large types, which are the types of predicates. P is an example of a large type)

5. T itself, which is the type of large types.

8.1.2 Judgements

The calculus of constructions allows proving typing judgements

x1 : A1, x2 : A2, . . . ⊢ t : B

35

36 CHAPTER 8. COQ PROOF OF GCD

which can be read as the implication

if variables x1, x2, . . . , have types A1, A2, . . . , then term t has type B

The valid judgements for the calculus of constructions are derivable from a set of inference
rules. In the following, we use Γ to mean a sequence of type assignments x1 : A1, x2 : A2, . . .,
and we use K to mean either P or T. We shall write A : B : C to mean ”A has type B, and
B has type C”. We shall write B(x := N) to mean the result of substituting the term N for
the variable x in the term B.

An inference rule is written in the form

Γ ⊢ A : B

Γ′ ⊢ C : D

which means

if Γ ⊢ A : B is a valid judgement, then so is Γ′ ⊢ C : D

8.1.3 Inference Rules

In Frade [Frad08] we find:

(axiom) () ⊢ s1 : s2 if (s1, s2) ∈ A

(start)
Γ ⊢ A : s

Γ, x : A ⊢ x : A
if x /∈ dom(Γ)

(weakening)
Γ ⊢M : A Γ ⊢ B : s

Γ, x : B ⊢M : A
if x /∈ dom(Γ)

(product)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2

Γ ⊢ (
∏

x : A.B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ ⊢M : (

∏
x : A.B) Γ ⊢ N : A

Γ ⊢MN : B[x := N]

(abstraction)
Γ, x : A ⊢M : B Γ ⊢ (

∏
x : A.B) : s

Γ ⊢ λx : A.M : (
∏

x : A.B)

(conversion)
Γ ⊢M : A Γ ⊢ B : s

Γ ⊢M : B
if A =β B

8.1.4 Defining Logical Operators

A⇒ B ≡ ∀x : A.B (x /∈ B)
A ∧B ≡ ∀C : P.(A⇒ B ⇒ C)⇒ C
A ∨B ≡ ∀C : P.(A⇒ C)⇒ (B ⇒ C)⇒ C
¬A ≡ ∀C : P.(A⇒ C)

∃x : A.B ≡ ∀C : P.(∀x : A.(B ⇒ C))⇒ C

8.2. WHY DOES COQ HAVE PROP? 37

8.1.5 Defining Types

The basic data types used in computer science can be defined within the Calculus of Con-
structions:

Booleans

∀A : P.A⇒ A⇒ A

Naturals

∀A : P.(A⇒ A)⇒ (A⇒ A)

Product A×B

A ∧B

Disjoint Union A+B

A ∨B

Note that Booleans and Naturals are defined in the same way as in Church encoding. However
additional problems raise from propositional extensionality and proof irrelevance.

8.2 Why does COQ have Prop?

From a stackexchange post [Stac17] we find the question:

”Coq has a type Prop of proof irrelevant propositions which are discarded during extraction.
What are the reasons for having this if we use Coq only for proofs? Prop is impredica-
tive, however, Coq automatically infers universe indexes and we can use Type(i) instead
everywhere. It seems Prop complicates everything a lot.”

Prop is very useful for program extraction because it allows us to delete parts of code that
are useless. For example, to extract a sorting algorithm we would prove the statement “for
every list l there is a list k such that k is ordered and k is a permutation of l”. If we write
this down in Coq and extract without using Prop, we will get:

1. “for all l there is a k” which gives us a map sort which takes lists to lists,

2. “such that k is ordered” will give a function verify which runs through k and checks
that it is sorted, and

3. “k is a permutation of l will give a permutation p1 which takes l to k. Note that p1
is not just a mapping, but also the inverse mapping together with programs verifying
that the two maps really are inverses.

While the extra stuff is not totally useless, in many applications we want to get ride of it
and keep just sort. This can be accomplished if we use Prop to state “k is ordered” and “k
is a permutation of l”, but not “for all l there is k”.

In general, a common way to extract code is to consider a statement of the form

∀x : A.∃y : B.ϕ(x, y)

38 CHAPTER 8. COQ PROOF OF GCD

where x is input, y is output, and ϕ(x, y) explains what it means for y to be a correct output.
(In the above example A and B are the types of lists and ϕ(l, k) is ”k is ordered and k is
a permutation of l.”) if ϕ is in Prop then extraction gives a map f : A ⇒ B such that
ϕ(x, f(x)) holds for all x ∈ A. If ϕ is in Set then we also get a function g such that g(x) is
the proof that ϕ(x, f(x)) holds, for all x ∈ A. Often the proof is computationally useless and
we prefer to get rid of it, especially when it is nested deeply inside some other statement.
Prop gives use the possibility to do so.

There is a question whether we could avoid Prop altogether by automatically optimizing away
“useless extracted code”. To some extent we can do that, for instance all code extracted
from the negative fragment of logic (stuff build from the empty type, unit type, products)
is useless as it just shuffles around the unit. But there are genuine design decisions one has
to make when using Prop. Here is a simple example, where

∑
means that we are in Type

and ∃ means we are in Prop. If we extract from∏
n:N

∑
b:[0,1]

∑
k:N

n = 2 · k + b

we will get an inductivea program which decomposes n into its lowest bit b and the remaining
bits k, i.e., it computes everything. If we extract from∏

n:N

∑
b:[0,1]
∃
k:N

n = 2 · k + b

then the program will only compute the lowest bit b. The machine cannot tell which is the
correct one, the user has to tell it what he wants.

8.3 Source code of COQ GCD Proof

This is the proof of GCD [Coqu16a] in the COQ [Coqu16] sources:

Library Coq.ZArith.Znumtheory

Require Import ZArith_base.

Require Import ZArithRing.

Require Import Zcomplements.

Require Import Zdiv.

Require Import Wf_nat.

For compatibility reasons, this Open Scope isn’t local as it should

Open Scope Z_scope.

This file contains some notions of number theory upon Z numbers:

a divisibility predicate Z.divide

a gcd predicate gcd

Euclid algorithm euclid

a relatively prime predicate rel_prime

a prime predicate prime

properties of the efficient Z.gcd function

8.3. SOURCE CODE OF COQ GCD PROOF 39

Notation Zgcd := Z.gcd (compat "8.3").

Notation Zggcd := Z.ggcd (compat "8.3").

Notation Zggcd_gcd := Z.ggcd_gcd (compat "8.3").

Notation Zggcd_correct_divisors := Z.ggcd_correct_divisors (compat "8.3").

Notation Zgcd_divide_l := Z.gcd_divide_l (compat "8.3").

Notation Zgcd_divide_r := Z.gcd_divide_r (compat "8.3").

Notation Zgcd_greatest := Z.gcd_greatest (compat "8.3").

Notation Zgcd_nonneg := Z.gcd_nonneg (compat "8.3").

Notation Zggcd_opp := Z.ggcd_opp (compat "8.3").

The former specialized inductive predicate Z.divide is now a generic existential predicate.

Notation Zdivide := Z.divide (compat "8.3").

Its former constructor is now a pseudo-constructor.

Definition Zdivide_intro a b q (H:b=q*a) : Z.divide a b := ex_intro _ q H.

Results concerning divisibility

Notation Zdivide_refl := Z.divide_refl (compat "8.3").

Notation Zone_divide := Z.divide_1_l (compat "8.3").

Notation Zdivide_0 := Z.divide_0_r (compat "8.3").

Notation Zmult_divide_compat_l := Z.mul_divide_mono_l (compat "8.3").

Notation Zmult_divide_compat_r := Z.mul_divide_mono_r (compat "8.3").

Notation Zdivide_plus_r := Z.divide_add_r (compat "8.3").

Notation Zdivide_minus_l := Z.divide_sub_r (compat "8.3").

Notation Zdivide_mult_l := Z.divide_mul_l (compat "8.3").

Notation Zdivide_mult_r := Z.divide_mul_r (compat "8.3").

Notation Zdivide_factor_r := Z.divide_factor_l (compat "8.3").

Notation Zdivide_factor_l := Z.divide_factor_r (compat "8.3").

Lemma Zdivide_opp_r a b : (a | b) -> (a | - b).

Lemma Zdivide_opp_r_rev a b : (a | - b) -> (a | b).

Lemma Zdivide_opp_l a b : (a | b) -> (- a | b).

Lemma Zdivide_opp_l_rev a b : (- a | b) -> (a | b).

Theorem Zdivide_Zabs_l a b : (Z.abs a | b) -> (a | b).

Theorem Zdivide_Zabs_inv_l a b : (a | b) -> (Z.abs a | b).

Hint Resolve Z.divide_refl Z.divide_1_l Z.divide_0_r: zarith.

Hint Resolve Z.mul_divide_mono_l Z.mul_divide_mono_r: zarith.

Hint Resolve Z.divide_add_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l

Zdivide_opp_l_rev Z.divide_sub_r Z.divide_mul_l Z.divide_mul_r

Z.divide_factor_l Z.divide_factor_r: zarith.

Auxiliary result.

Lemma Zmult_one x y : x >= 0 -> x * y = 1 -> x = 1.

40 CHAPTER 8. COQ PROOF OF GCD

Only 1 and -1 divide 1.

Notation Zdivide_1 := Z.divide_1_r (compat "8.3").

If a divides b and b divides a then a is b or -b.

Notation Zdivide_antisym := Z.divide_antisym (compat "8.3").

Notation Zdivide_trans := Z.divide_trans (compat "8.3").

If a divides b and b<>0 then |a| <= |b|.

Lemma Zdivide_bounds a b : (a | b) -> b <> 0 -> Z.abs a <= Z.abs b.

Z.divide can be expressed using Z.modulo.

Lemma Zmod_divide : forall a b, b<>0 -> a mod b = 0 -> (b | a).

Lemma Zdivide_mod : forall a b, (b | a) -> a mod b = 0.

Z.divide is hence decidable

Lemma Zdivide_dec a b : {(a | b)} + {~ (a | b)}.

Theorem Zdivide_Zdiv_eq a b : 0 < a -> (a | b) -> b = a * (b / a).

Theorem Zdivide_Zdiv_eq_2 a b c :

0 < a -> (a | b) -> (c * b) / a = c * (b / a).

Theorem Zdivide_le: forall a b : Z,

0 <= a -> 0 < b -> (a | b) -> a <= b.

Theorem Zdivide_Zdiv_lt_pos a b :

1 < a -> 0 < b -> (a | b) -> 0 < b / a < b .

Lemma Zmod_div_mod n m a:

0 < n -> 0 < m -> (n | m) -> a mod n = (a mod m) mod n.

Lemma Zmod_divide_minus a b c:

0 < b -> a mod b = c -> (b | a - c).

Lemma Zdivide_mod_minus a b c:

0 <= c < b -> (b | a - c) -> a mod b = c.

Greatest common divisor (gcd).

There is no unicity of the gcd; hence we define the predicate Zis_gcd a b g expressing that g is a gcd of a and b. (We show later that the gcd is actually unique if we discard its sign.)

Inductive Zis_gcd (a b g:Z) : Prop :=

Zis_gcd_intro :

(g | a) ->

(g | b) ->

(forall x, (x | a) -> (x | b) -> (x | g)) ->

Zis_gcd a b g.

8.3. SOURCE CODE OF COQ GCD PROOF 41

Trivial properties of gcd

Lemma Zis_gcd_sym : forall a b d, Zis_gcd a b d -> Zis_gcd b a d.

Lemma Zis_gcd_0 : forall a, Zis_gcd a 0 a.

Lemma Zis_gcd_1 : forall a, Zis_gcd a 1 1.

Lemma Zis_gcd_refl : forall a, Zis_gcd a a a.

Lemma Zis_gcd_minus : forall a b d, Zis_gcd a (- b) d -> Zis_gcd b a d.

Lemma Zis_gcd_opp : forall a b d, Zis_gcd a b d -> Zis_gcd b a (- d).

Lemma Zis_gcd_0_abs a : Zis_gcd 0 a (Z.abs a).

Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.

Theorem Zis_gcd_unique: forall a b c d : Z,

Zis_gcd a b c -> Zis_gcd a b d -> c = d \/ c = (- d).

Extended Euclid algorithm.

Euclid’s algorithm to compute the gcd mainly relies on the following property.

Lemma Zis_gcd_for_euclid :

forall a b d q:Z, Zis_gcd b (a - q * b) d -> Zis_gcd a b d.

Lemma Zis_gcd_for_euclid2 :

forall b d q r:Z, Zis_gcd r b d -> Zis_gcd b (b * q + r) d.

We implement the extended version of Euclid’s algorithm, i.e. the one computing Bezout’s coefficients as it computes the gcd. We follow the algorithm given in Knuth’s "Art of Computer Programming", vol 2, page 325.

Section extended_euclid_algorithm.

Variables a b : Z.

The specification of Euclid’s algorithm is the existence of u, v and d such that ua+vb=d and (gcd a b d).

Inductive Euclid : Set :=

Euclid_intro :

forall u v d:Z, u * a + v * b = d -> Zis_gcd a b d -> Euclid.

The recursive part of Euclid’s algorithm uses well-founded recursion of non-negative integers. It maintains 6 integers u1,u2,u3,v1,v2,v3 such that the following invariant holds: u1*a+u2*b=u3 and v1*a+v2*b=v3 and gcd(u3,v3)=gcd(a,b).

Lemma euclid_rec :

forall v3:Z,

0 <= v3 ->

forall u1 u2 u3 v1 v2:Z,

u1 * a + u2 * b = u3 ->

v1 * a + v2 * b = v3 ->

(forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.

We get Euclid’s algorithm by applying euclid_rec on 1,0,a,0,1,b when b>=0 and 1,0,a,0,-1,-b when b<0.

42 CHAPTER 8. COQ PROOF OF GCD

Lemma euclid : Euclid.

End extended_euclid_algorithm.

Theorem Zis_gcd_uniqueness_apart_sign :

forall a b d d’:Z, Zis_gcd a b d -> Zis_gcd a b d’ -> d = d’ \/ d = - d’.

Bezout’s coefficients

Inductive Bezout (a b d:Z) : Prop :=

Bezout_intro : forall u v:Z, u * a + v * b = d -> Bezout a b d.

Existence of Bezout’s coefficients for the gcd of a and b

Lemma Zis_gcd_bezout : forall a b d:Z, Zis_gcd a b d -> Bezout a b d.

gcd of ca and cb is c gcd(a,b).

Lemma Zis_gcd_mult :

forall a b c d:Z, Zis_gcd a b d -> Zis_gcd (c * a) (c * b) (c * d).

Relative primality

Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1.

Bezout’s theorem: a and b are relatively prime if and only if there exist u and v such that ua+vb = 1.

Lemma rel_prime_bezout : forall a b:Z, rel_prime a b -> Bezout a b 1.

Lemma bezout_rel_prime : forall a b:Z, Bezout a b 1 -> rel_prime a b.

Gauss’s theorem: if a divides bc and if a and b are relatively prime, then a divides c.

Theorem Gauss : forall a b c:Z, (a | b * c) -> rel_prime a b -> (a | c).

If a is relatively prime to b and c, then it is to bc

Lemma rel_prime_mult :

forall a b c:Z, rel_prime a b -> rel_prime a c -> rel_prime a (b * c).

Lemma rel_prime_cross_prod :

forall a b c d:Z,

rel_prime a b ->

rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d.

After factorization by a gcd, the original numbers are relatively prime.

Lemma Zis_gcd_rel_prime :

forall a b g:Z,

b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g).

Theorem rel_prime_sym: forall a b, rel_prime a b -> rel_prime b a.

Theorem rel_prime_div: forall p q r,

8.3. SOURCE CODE OF COQ GCD PROOF 43

rel_prime p q -> (r | p) -> rel_prime r q.

Theorem rel_prime_1: forall n, rel_prime 1 n.

Theorem not_rel_prime_0: forall n, 1 < n -> ~ rel_prime 0 n.

Theorem rel_prime_mod: forall p q, 0 < q ->

rel_prime p q -> rel_prime (p mod q) q.

Theorem rel_prime_mod_rev: forall p q, 0 < q ->

rel_prime (p mod q) q -> rel_prime p q.

Theorem Zrel_prime_neq_mod_0: forall a b, 1 < b -> rel_prime a b -> a mod b <> 0.

Primality

Inductive prime (p:Z) : Prop :=

prime_intro :

1 < p -> (forall n:Z, 1 <= n < p -> rel_prime n p) -> prime p.

The sole divisors of a prime number p are -1, 1, p and -p.

Lemma prime_divisors :

forall p:Z,

prime p -> forall a:Z, (a | p) -> a = -1 \/ a = 1 \/ a = p \/ a = - p.

A prime number is relatively prime with any number it does not divide

Lemma prime_rel_prime :

forall p:Z, prime p -> forall a:Z, ~ (p | a) -> rel_prime p a.

Hint Resolve prime_rel_prime: zarith.

As a consequence, a prime number is relatively prime with smaller numbers

Theorem rel_prime_le_prime:

forall a p, prime p -> 1 <= a < p -> rel_prime a p.

If a prime p divides ab then it divides either a or b

Lemma prime_mult :

forall p:Z, prime p -> forall a b:Z, (p | a * b) -> (p | a) \/ (p | b).

Lemma not_prime_0: ~ prime 0.

Lemma not_prime_1: ~ prime 1.

Lemma prime_2: prime 2.

Theorem prime_3: prime 3.

Theorem prime_ge_2 p : prime p -> 2 <= p.

Definition prime’ p := 1<p /\ (forall n, 1<n<p -> ~ (n|p)).

44 CHAPTER 8. COQ PROOF OF GCD

Lemma Z_0_1_more x : 0<=x -> x=0 \/ x=1 \/ 1<x.

Theorem prime_alt p : prime’ p <-> prime p.

Theorem square_not_prime: forall a, ~ prime (a * a).

Theorem prime_div_prime: forall p q,

prime p -> prime q -> (p | q) -> p = q.

we now prove that Z.gcd is indeed a gcd in the sense of Zis_gcd.

Notation Zgcd_is_pos := Z.gcd_nonneg (compat "8.3").

Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Z.gcd a b).

Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}.

Theorem Zdivide_Zgcd: forall p q r : Z,

(p | q) -> (p | r) -> (p | Z.gcd q r).

Theorem Zis_gcd_gcd: forall a b c : Z,

0 <= c -> Zis_gcd a b c -> Z.gcd a b = c.

Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (compat "8.3").

Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (compat "8.3").

Theorem Zgcd_div_swap0 : forall a b : Z,

0 < Z.gcd a b ->

0 < b ->

(a / Z.gcd a b) * b = a * (b/Z.gcd a b).

Theorem Zgcd_div_swap : forall a b c : Z,

0 < Z.gcd a b ->

0 < b ->

(c * a) / Z.gcd a b * b = c * a * (b/Z.gcd a b).

Notation Zgcd_comm := Z.gcd_comm (compat "8.3").

Lemma Zgcd_ass a b c : Z.gcd (Z.gcd a b) c = Z.gcd a (Z.gcd b c).

Notation Zgcd_Zabs := Z.gcd_abs_l (compat "8.3").

Notation Zgcd_0 := Z.gcd_0_r (compat "8.3").

Notation Zgcd_1 := Z.gcd_1_r (compat "8.3").

Hint Resolve Z.gcd_0_r Z.gcd_1_r : zarith.

Theorem Zgcd_1_rel_prime : forall a b,

Z.gcd a b = 1 <-> rel_prime a b.

Definition rel_prime_dec: forall a b,

{ rel_prime a b }+{ ~ rel_prime a b }.

Definition prime_dec_aux:

8.3. SOURCE CODE OF COQ GCD PROOF 45

forall p m,

{ forall n, 1 < n < m -> rel_prime n p } +

{ exists n, 1 < n < m /\ ~ rel_prime n p }.

Definition prime_dec: forall p, { prime p }+{ ~ prime p }.

Theorem not_prime_divide:

forall p, 1 < p -> ~ prime p -> exists n, 1 < n < p /\ (n | p).

46 CHAPTER 8. COQ PROOF OF GCD

Chapter 9

LEAN proof of GCD

This is the proof of GCD [Avig14] in the LEAN [Avig16] sources:

/-

Copyright (c) 2014 Jeremy Avigad. All rights reserved.

Released under Apache 2.0 license as described in the file LICENSE.

Authors: Jeremy Avigad, Leonardo de Moura

Definitions and properties of gcd, lcm, and coprime.

-/

import .div

open eq.ops well_founded decidable prod

namespace nat

/- gcd -/

private definition pair_nat.lt : nat nat nat nat Prop := measure pr

private definition pair_nat.lt.wf : well_founded pair_nat.lt :=

intro_k (measure.wf pr) 20 -- we use intro_k to be able to execute gcd efficiently in the kernel

local attribute pair_nat.lt.wf [instance] -- instance will not be saved in .olean

local infixl ‘ ‘:50 := pair_nat.lt

private definition gcd.lt.dec (x y : nat) : (succ y, x % succ y) (x, succ y) :=

!mod_lt (succ_pos y)

definition gcd.F : (p : nat nat), (p : nat nat, p p nat) nat

| (x, 0) f := x

| (x, succ y) f := f (succ y, x % succ y) !gcd.lt.dec

definition gcd (x y : nat) := fix gcd.F (x, y)

theorem gcd_zero_right [simp] (x : nat) : gcd x 0 = x := rfl

theorem gcd_succ [simp] (x y : nat) : gcd x (succ y) = gcd (succ y) (x % succ y) :=

well_founded.fix_eq gcd.F (x, succ y)

47

48 CHAPTER 9. LEAN PROOF OF GCD

theorem gcd_one_right (n :) : gcd n 1 = 1 :=

calc gcd n 1 = gcd 1 (n % 1) : gcd_succ

... = gcd 1 0 : mod_one

theorem gcd_def (x :) : (y :), gcd x y = if y = 0 then x else gcd y (x % y)

| 0 := !gcd_zero_right

| (succ y) := !gcd_succ (if_neg !succ_ne_zero)

theorem gcd_self : (n :), gcd n n = n

| 0 := rfl

| (succ n) := calc

gcd (succ n) (succ n) = gcd (succ n) (succ n % succ n) : gcd_succ

... = gcd (succ n) 0 : mod_self

theorem gcd_zero_left : (n :), gcd 0 n = n

| 0 := rfl

| (succ n) := calc

gcd 0 (succ n) = gcd (succ n) (0 % succ n) : gcd_succ

... = gcd (succ n) 0 : zero_mod

theorem gcd_of_pos (m :) {n : } (H : n > 0) : gcd m n = gcd n (m % n) :=

gcd_def m n if_neg (ne_zero_of_pos H)

theorem gcd_rec (m n :) : gcd m n = gcd n (m % n) :=

by_cases_zero_pos n

(calc

m = gcd 0 m : gcd_zero_left

... = gcd 0 (m % 0) : mod_zero)

(take n, assume H : 0 < n, gcd_of_pos m H)

theorem gcd.induction {P : Prop}

(m n :)

(H0 : m, P m 0)

(H1 : m n, 0 < n P n (m % n) P m n) :

P m n :=

induction (m, n) (prod.rec (m, nat.rec (IH, H0 m)

(n v (IH : p, p (m, succ n) P (pr p) (pr p)),

H1 m (succ n) !succ_pos (IH _ !gcd.lt.dec))))

theorem gcd_dvd (m n :) : (gcd m n m) (gcd m n n) :=

gcd.induction m n

(take m, and.intro (!one_mul !dvd_mul_left) !dvd_zero)

(take m n (npos : 0 < n), and.rec

(assume (IH : gcd n (m % n) n) (IH : gcd n (m % n) (m % n)),

have H : (gcd n (m % n) (m / n * n + m % n)), from

dvd_add (dvd.trans IH !dvd_mul_left) IH,

have H1 : (gcd n (m % n) m), from !eq_div_mul_add_mod H,

show (gcd m n m) (gcd m n n), from !gcd_rec (and.intro H1 IH)))

theorem gcd_dvd_left (m n :) : gcd m n m := and.left !gcd_dvd

theorem gcd_dvd_right (m n :) : gcd m n n := and.right !gcd_dvd

49

theorem dvd_gcd {m n k : } : k m k n k gcd m n :=

gcd.induction m n (take m, imp.intro)

(take m n (npos : n > 0)

(IH : k n k m % n k gcd n (m % n))

(H1 : k m) (H2 : k n),

have H3 : k m / n * n + m % n, from !eq_div_mul_add_mod H1,

have H4 : k m % n, from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 !dvd_mul_left),

!gcd_rec IH H2 H4)

theorem gcd.comm (m n :) : gcd m n = gcd n m :=

dvd.antisymm

(dvd_gcd !gcd_dvd_right !gcd_dvd_left)

(dvd_gcd !gcd_dvd_right !gcd_dvd_left)

theorem gcd.assoc (m n k :) : gcd (gcd m n) k = gcd m (gcd n k) :=

dvd.antisymm

(dvd_gcd

(dvd.trans !gcd_dvd_left !gcd_dvd_left)

(dvd_gcd (dvd.trans !gcd_dvd_left !gcd_dvd_right) !gcd_dvd_right))

(dvd_gcd

(dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !gcd_dvd_left))

(dvd.trans !gcd_dvd_right !gcd_dvd_right))

theorem gcd_one_left (m :) : gcd 1 m = 1 :=

!gcd.comm !gcd_one_right

theorem gcd_mul_left (m n k :) : gcd (m * n) (m * k) = m * gcd n k :=

gcd.induction n k

(take n, calc gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero)

(take n k,

assume H : 0 < k,

assume IH : gcd (m * k) (m * (n % k)) = m * gcd k (n % k),

calc

gcd (m * n) (m * k) = gcd (m * k) (m * n % (m * k)) : !gcd_rec

... = gcd (m * k) (m * (n % k)) : mul_mod_mul_left

... = m * gcd k (n % k) : IH

... = m * gcd n k : !gcd_rec)

theorem gcd_mul_right (m n k :) : gcd (m * n) (k * n) = gcd m k * n :=

calc

gcd (m * n) (k * n) = gcd (n * m) (k * n) : mul.comm

... = gcd (n * m) (n * k) : mul.comm

... = n * gcd m k : gcd_mul_left

... = gcd m k * n : mul.comm

theorem gcd_pos_of_pos_left {m : } (n :) (mpos : m > 0) : gcd m n > 0 :=

pos_of_dvd_of_pos !gcd_dvd_left mpos

theorem gcd_pos_of_pos_right (m :) {n : } (npos : n > 0) : gcd m n > 0 :=

pos_of_dvd_of_pos !gcd_dvd_right npos

theorem eq_zero_of_gcd_eq_zero_left {m n : } (H : gcd m n = 0) : m = 0 :=

or.elim (eq_zero_or_pos m)

(assume H1, H1)

50 CHAPTER 9. LEAN PROOF OF GCD

(assume H1 : m > 0, absurd H (ne_of_lt (!gcd_pos_of_pos_left H1)))

theorem eq_zero_of_gcd_eq_zero_right {m n : } (H : gcd m n = 0) : n = 0 :=

eq_zero_of_gcd_eq_zero_left (!gcd.comm H)

theorem gcd_div {m n k : } (H1 : k m) (H2 : k n) :

gcd (m / k) (n / k) = gcd m n / k :=

or.elim (eq_zero_or_pos k)

(assume H3 : k = 0, by subst k; rewrite *nat.div_zero)

(assume H3 : k > 0, (nat.div_eq_of_eq_mul_left H3 (calc

gcd m n = gcd m (n / k * k) : nat.div_mul_cancel H2

... = gcd (m / k * k) (n / k * k) : nat.div_mul_cancel H1

... = gcd (m / k) (n / k) * k : gcd_mul_right)))

theorem gcd_dvd_gcd_mul_left (m n k :) : gcd m n gcd (k * m) n :=

dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right

theorem gcd_dvd_gcd_mul_right (m n k :) : gcd m n gcd (m * k) n :=

!mul.comm !gcd_dvd_gcd_mul_left

theorem gcd_dvd_gcd_mul_left_right (m n k :) : gcd m n gcd m (k * n) :=

dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !dvd_mul_left)

theorem gcd_dvd_gcd_mul_right_right (m n k :) : gcd m n gcd m (n * k) :=

!mul.comm !gcd_dvd_gcd_mul_left_right

/- lcm -/

definition lcm (m n :) : := m * n / (gcd m n)

theorem lcm.comm (m n :) : lcm m n = lcm n m :=

calc

lcm m n = m * n / gcd m n : rfl

... = n * m / gcd m n : mul.comm

... = n * m / gcd n m : gcd.comm

... = lcm n m : rfl

theorem lcm_zero_left (m :) : lcm 0 m = 0 :=

calc

lcm 0 m = 0 * m / gcd 0 m : rfl

... = 0 / gcd 0 m : zero_mul

... = 0 : nat.zero_div

theorem lcm_zero_right (m :) : lcm m 0 = 0 := !lcm.comm !lcm_zero_left

theorem lcm_one_left (m :) : lcm 1 m = m :=

calc

lcm 1 m = 1 * m / gcd 1 m : rfl

... = m / gcd 1 m : one_mul

... = m / 1 : gcd_one_left

... = m : nat.div_one

theorem lcm_one_right (m :) : lcm m 1 = m := !lcm.comm !lcm_one_left

51

theorem lcm_self (m :) : lcm m m = m :=

have H : m * m / m = m, from

by_cases_zero_pos m !nat.div_zero (take m, assume H1 : m > 0, !nat.mul_div_cancel H1),

calc

lcm m m = m * m / gcd m m : rfl

... = m * m / m : gcd_self

... = m : H

theorem dvd_lcm_left (m n :) : m lcm m n :=

have H : lcm m n = m * (n / gcd m n), from nat.mul_div_assoc _ !gcd_dvd_right,

dvd.intro H

theorem dvd_lcm_right (m n :) : n lcm m n :=

!lcm.comm !dvd_lcm_left

theorem gcd_mul_lcm (m n :) : gcd m n * lcm m n = m * n :=

eq.symm (nat.eq_mul_of_div_eq_right (dvd.trans !gcd_dvd_left !dvd_mul_right) rfl)

theorem lcm_dvd {m n k : } (H1 : m k) (H2 : n k) : lcm m n k :=

or.elim (eq_zero_or_pos k)

(assume kzero : k = 0, !kzero !dvd_zero)

(assume kpos : k > 0,

have mpos : m > 0, from pos_of_dvd_of_pos H1 kpos,

have npos : n > 0, from pos_of_dvd_of_pos H2 kpos,

have gcd_pos : gcd m n > 0, from !gcd_pos_of_pos_left mpos,

obtain p (km : k = m * p), from exists_eq_mul_right_of_dvd H1,

obtain q (kn : k = n * q), from exists_eq_mul_right_of_dvd H2,

have ppos : p > 0, from pos_of_mul_pos_left (km kpos),

have qpos : q > 0, from pos_of_mul_pos_left (kn kpos),

have H3 : p * q * (m * n * gcd p q) = p * q * (gcd m n * k), from

calc

p * q * (m * n * gcd p q)

= m * p * (n * q * gcd p q) : by rewrite [*mul.assoc, *mul.left_comm q,

mul.left_comm p]

... = k * (k * gcd p q) : by rewrite [-kn, -km]

... = k * gcd (k * p) (k * q) : by rewrite gcd_mul_left

... = k * gcd (n * q * p) (m * p * q) : by rewrite [-kn, -km]

... = k * (gcd n m * (p * q)) : by rewrite [*mul.assoc, mul.comm q, gcd_mul_right]

... = p * q * (gcd m n * k) : by rewrite [mul.comm, mul.comm (gcd n m), gcd.comm,

*mul.assoc],

have H4 : m * n * gcd p q = gcd m n * k,

from !eq_of_mul_eq_mul_left (mul_pos ppos qpos) H3,

have H5 : gcd m n * (lcm m n * gcd p q) = gcd m n * k,

from !mul.assoc !gcd_mul_lcm H4,

have H6 : lcm m n * gcd p q = k,

from !eq_of_mul_eq_mul_left gcd_pos H5,

dvd.intro H6)

theorem lcm.assoc (m n k :) : lcm (lcm m n) k = lcm m (lcm n k) :=

dvd.antisymm

(lcm_dvd

(lcm_dvd !dvd_lcm_left (dvd.trans !dvd_lcm_left !dvd_lcm_right))

(dvd.trans !dvd_lcm_right !dvd_lcm_right))

(lcm_dvd

52 CHAPTER 9. LEAN PROOF OF GCD

(dvd.trans !dvd_lcm_left !dvd_lcm_left)

(lcm_dvd (dvd.trans !dvd_lcm_right !dvd_lcm_left) !dvd_lcm_right))

/- coprime -/

definition coprime [reducible] (m n :) : Prop := gcd m n = 1

lemma gcd_eq_one_of_coprime {m n : } : coprime m n gcd m n = 1 :=

h, h

theorem coprime_swap {m n : } (H : coprime n m) : coprime m n :=

!gcd.comm H

theorem dvd_of_coprime_of_dvd_mul_right {m n k : } (H1 : coprime k n) (H2 : k m * n) : k m :=

have H3 : gcd (m * k) (m * n) = m, from

calc

gcd (m * k) (m * n) = m * gcd k n : gcd_mul_left

... = m * 1 : H1

... = m : mul_one,

have H4 : (k gcd (m * k) (m * n)), from dvd_gcd !dvd_mul_left H2,

H3 H4

theorem dvd_of_coprime_of_dvd_mul_left {m n k : } (H1 : coprime k m) (H2 : k m * n) : k n :=

dvd_of_coprime_of_dvd_mul_right H1 (!mul.comm H2)

theorem gcd_mul_left_cancel_of_coprime {k : } (m :) {n : } (H : coprime k n) :

gcd (k * m) n = gcd m n :=

have H1 : coprime (gcd (k * m) n) k, from

calc

gcd (gcd (k * m) n) k

= gcd (k * gcd 1 m) n : by rewrite [-gcd_mul_left, mul_one, gcd.comm, gcd.assoc]

... = 1 : by rewrite [gcd_one_left, mul_one, coprime at H, H],

dvd.antisymm

(dvd_gcd (dvd_of_coprime_of_dvd_mul_left H1 !gcd_dvd_left) !gcd_dvd_right)

(dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right)

theorem gcd_mul_right_cancel_of_coprime (m :) {k n : } (H : coprime k n) :

gcd (m * k) n = gcd m n :=

!mul.comm !gcd_mul_left_cancel_of_coprime H

theorem gcd_mul_left_cancel_of_coprime_right {k m : } (n :) (H : coprime k m) :

gcd m (k * n) = gcd m n :=

!gcd.comm !gcd.comm !gcd_mul_left_cancel_of_coprime H

theorem gcd_mul_right_cancel_of_coprime_right {k m : } (n :) (H : coprime k m) :

gcd m (n * k) = gcd m n :=

!gcd.comm !gcd.comm !gcd_mul_right_cancel_of_coprime H

theorem coprime_div_gcd_div_gcd {m n : } (H : gcd m n > 0) :

coprime (m / gcd m n) (n / gcd m n) :=

calc

gcd (m / gcd m n) (n / gcd m n) = gcd m n / gcd m n : gcd_div !gcd_dvd_left !gcd_dvd_right

... = 1 : nat.div_self H

53

theorem not_coprime_of_dvd_of_dvd {m n d : } (dgt1 : d > 1) (Hm : d m) (Hn : d n) :

coprime m n :=

assume co : coprime m n,

have d gcd m n, from dvd_gcd Hm Hn,

have d 1, by rewrite [coprime at co, co at this]; apply this,

have d 1, from le_of_dvd dec_trivial this,

show false, from not_lt_of_ge ‘d 1‘ ‘d > 1‘

theorem exists_coprime {m n : } (H : gcd m n > 0) :

exists m’ n’, coprime m’ n’ m = m’ * gcd m n n = n’ * gcd m n :=

have H1 : m = (m / gcd m n) * gcd m n, from (nat.div_mul_cancel !gcd_dvd_left),

have H2 : n = (n / gcd m n) * gcd m n, from (nat.div_mul_cancel !gcd_dvd_right),

exists.intro _ (exists.intro _ (and.intro (coprime_div_gcd_div_gcd H) (and.intro H1 H2)))

theorem coprime_mul {m n k : } (H1 : coprime m k) (H2 : coprime n k) : coprime (m * n) k :=

calc

gcd (m * n) k = gcd n k : !gcd_mul_left_cancel_of_coprime H1

... = 1 : H2

theorem coprime_mul_right {k m n : } (H1 : coprime k m) (H2 : coprime k n) : coprime k (m * n) :=

coprime_swap (coprime_mul (coprime_swap H1) (coprime_swap H2))

theorem coprime_of_coprime_mul_left {k m n : } (H : coprime (k * m) n) : coprime m n :=

have H1 : (gcd m n gcd (k * m) n), from !gcd_dvd_gcd_mul_left,

eq_one_of_dvd_one (H H1)

theorem coprime_of_coprime_mul_right {k m n : } (H : coprime (m * k) n) : coprime m n :=

coprime_of_coprime_mul_left (!mul.comm H)

theorem coprime_of_coprime_mul_left_right {k m n : } (H : coprime m (k * n)) : coprime m n :=

coprime_swap (coprime_of_coprime_mul_left (coprime_swap H))

theorem coprime_of_coprime_mul_right_right {k m n : } (H : coprime m (n * k)) : coprime m n :=

coprime_of_coprime_mul_left_right (!mul.comm H)

theorem comprime_one_left : n, coprime 1 n :=

n, !gcd_one_left

theorem comprime_one_right : n, coprime n 1 :=

n, !gcd_one_right

theorem exists_eq_prod_and_dvd_and_dvd {m n k : nat} (H : k m * n) :

m’ n’, k = m’ * n’ m’ m n’ n :=

or.elim (eq_zero_or_pos (gcd k m))

(assume H1 : gcd k m = 0,

have H2 : k = 0, from eq_zero_of_gcd_eq_zero_left H1,

have H3 : m = 0, from eq_zero_of_gcd_eq_zero_right H1,

have H4 : k = 0 * n, from H2 !zero_mul,

have H5 : 0 m, from H3 !dvd.refl,

have H6 : n n, from !dvd.refl,

exists.intro _ (exists.intro _ (and.intro H4 (and.intro H5 H6))))

(assume H1 : gcd k m > 0,

have H2 : gcd k m k, from !gcd_dvd_left,

have H3 : k / gcd k m (m * n) / gcd k m, from nat.div_dvd_div H2 H,

54 CHAPTER 9. LEAN PROOF OF GCD

have H4 : (m * n) / gcd k m = (m / gcd k m) * n, from

calc

m * n / gcd k m = n * m / gcd k m : mul.comm

... = n * (m / gcd k m) : !nat.mul_div_assoc !gcd_dvd_right

... = m / gcd k m * n : mul.comm,

have H5 : k / gcd k m (m / gcd k m) * n, from H4 H3,

have H6 : coprime (k / gcd k m) (m / gcd k m), from coprime_div_gcd_div_gcd H1,

have H7 : k / gcd k m n, from dvd_of_coprime_of_dvd_mul_left H6 H5,

have H8 : k = gcd k m * (k / gcd k m), from (nat.mul_div_cancel’ H2),

exists.intro _ (exists.intro _ (and.intro H8 (and.intro !gcd_dvd_right H7))))

end nat

Chapter 10

Formal Pre- and Post-conditions

In Boldo [Bold11] we find an effort to verify floating point software using preconditions,
postconditions, and assertions. Quoting:

“These conjectures can be described formally by annotations as follows.

/*@ requires \abs(x) <= 0x1p-5;

@ ensures \abs(\result - \cos(x)) <= 0x1p-23;

@*/

float my_cosine(float x) {

//@ assert \abs(1.0 - x*x*0.5 - \cos(x)) < 0x1p-24;

return 1.0f - x * x * 0.5f;

}

The precondition, introduced by requires, states that we expect argument x in the interval
[-1/32; 1/32]. The postcondition, introduced by ensures, states that the distance between
the value returned by the function, denoted by the keyword \result, and the model of the
program, which is here the true mathematical cosine function denoted by \cos in ACSL, is
not greater than 2−23. It is important to notice that in annotations the operators like + or
∗ denote operations on real numbers and not on floating-point numbers. In particular, there
is no rounding error and no overflow in annotations, unlike in the early Leavens’ proposal.
The C variables of type float, like x and \result in this example, are interpreted as the
real number they represent. Thus, the last annotation, given as an assertion inside the code,
is a way to make explicit the reasoning we made above, making the total error the sum of
the method error and the rounding error: it states that the method error is less than 2−24.
Again, it is thanks to the choice of having exact operations in the annotations that we are
able to state a property of the method error.”

In Boldo [Bold07, Bold07a] we find ’search in an array’ annotated:

/*@ requires \valid_range(t,0,n-1)

@ ensures

@ (0 <= \result < n => t[\result] == v) &&

@ (\result == n =>

@ \forall int i; 0 <= i < n => t[i] != v) */

int index(int t[], int n, int v) {

int i = 0;

/*@ invariant 0 <= i &&

@ \forall int k; 0 <= k <i => t[k] != v

55

56 CHAPTER 10. FORMAL PRE- AND POST-CONDITIONS

@ variant n - i */

while (i < n) {

if (t[i] == v) break;

i++;

}

return i;

}

Chapter 11

Types and Signatures

We need to start from a base of the existing types in Common Lisp, eventually providing
Axiom combinations or specializations. Common Lisp has these standard type specifier
symbols.

Common Lisp Type Hierarchy [Pfei12]

57

58 CHAPTER 11. TYPES AND SIGNATURES

Axiom adds these types:

59

• Command = String

60 CHAPTER 11. TYPES AND SIGNATURES

Chapter 12

COQ nat vs Axiom NNI

COQ’s nat domain includes a proof of GCD.

We would like to show an isomorphism between types in Coq and types in Axiom. Having
such an isomorphism will make lemmas available and simplify future proofs.

Note that Coq’s nat domain stops at O (a symbolic 0) as does Axiom’s NNI. The Axiom
interpreter will promote a subtraction to Integer whereas Coq will not.

COQ’s nat domain [COQnat] is

12.0.1 Library Coq.Init.Nat

Require Import Notations Logic Datatypes.

Local Open Scope nat_scope.

Peano natural numbers, definitions of operations

This file is meant to be used as a whole module, without importing it, leading to qualified
definitions (e.g. Nat.pred)

Definition t := nat.

Constants

Definition zero := 0.

Definition one := 1.

Definition two := 2.

Basic operations

Definition succ := S.

Definition pred n :=

match n with

| 0 => n

| S u => u

end.

Fixpoint add n m :=

61

62 CHAPTER 12. COQ NAT VS AXIOM NNI

match n with

| 0 => m

| S p => S (p + m)

end

where "n + m" := (add n m) : nat_scope.

Definition double n := n + n.

Fixpoint mul n m :=

match n with

| 0 => 0

| S p => m + p * m

end

where "n * m" := (mul n m) : nat_scope.

Note that Axiom’s NNI domain will be automatically promoted to Integer when the sub-
traction result is negative. Coq returns O when this occurs.

Truncated subtraction: n-m is 0 if n<=m

Fixpoint sub n m :=

match n, m with

| S k, S l => k - l

| _, _ => n

end

where "n - m" := (sub n m) : nat_scope.

Comparisons

Fixpoint eqb n m : bool :=

match n, m with

| 0, 0 => true

| 0, S _ => false

| S _, 0 => false

| S n’, S m’ => eqb n’ m’

end.

Fixpoint leb n m : bool :=

match n, m with

| 0, _ => true

| _, 0 => false

| S n’, S m’ => leb n’ m’

end.

Definition ltb n m := leb (S n) m.

Infix "=?" := eqb (at level 70) : nat_scope.

Infix "<=?" := leb (at level 70) : nat_scope.

Infix "<?" := ltb (at level 70) : nat_scope.

Fixpoint compare n m : comparison :=

63

match n, m with

| 0, 0 => Eq

| 0, S _ => Lt

| S _, 0 => Gt

| S n’, S m’ => compare n’ m’

end.

Infix "?=" := compare (at level 70) : nat_scope.

Minimum, maximum

Fixpoint max n m :=

match n, m with

| 0, _ => m

| S n’, 0 => n

| S n’, S m’ => S (max n’ m’)

end.

Fixpoint min n m :=

match n, m with

| 0, _ => 0

| S n’, 0 => 0

| S n’, S m’ => S (min n’ m’)

end.

Parity tests

Fixpoint even n : bool :=

match n with

| 0 => true

| 1 => false

| S (S n’) => even n’

end.

Definition odd n := negb (even n).

Power

Fixpoint pow n m :=

match m with

| 0 => 1

| S m => n * (n^m)

end

where "n ^ m" := (pow n m) : nat_scope.

Euclidean division

This division is linear and tail-recursive. In divmod, y is the

predecessor of the actual divisor, and u is y minus the real remainder

Fixpoint divmod x y q u :=

match x with

| 0 => (q,u)

64 CHAPTER 12. COQ NAT VS AXIOM NNI

| S x’ => match u with

| 0 => divmod x’ y (S q) y

| S u’ => divmod x’ y q u’

end

end.

Definition div x y :=

match y with

| 0 => y

| S y’ => fst (divmod x y’ 0 y’)

end.

Definition modulo x y :=

match y with

| 0 => y

| S y’ => y’ - snd (divmod x y’ 0 y’)

end.

Infix "/" := div : nat_scope.

Infix "mod" := modulo (at level 40, no associativity) : nat_scope.

Greatest common divisor

We use Euclid algorithm, which is normally not structural, but Coq is

now clever enough to accept this (behind modulo there is a subtraction,

which now preserves being a subterm)

Fixpoint gcd a b :=

match a with

| O => b

| S a’ => gcd (b mod (S a’)) (S a’)

end.

Square

Definition square n := n * n.

Square root

The following square root function is linear (and tail-recursive).

With Peano representation, we can’t do better. For faster algorithm,

see Psqrt/Zsqrt/Nsqrt... We search the square root of

n = k + p^2 + (q - r) with q = 2p and 0<=r<=q. We start with

p=q=r=0, hence looking for the square root of n = k. Then we

progressively decrease k and r. When k = S k’ and r=0, it means we can

use (S p) as new sqrt candidate, since (S k’)+p^2+2p = k’+(S

p)^2. When k reaches 0, we have found the biggest p^2 square contained

in n, hence the square root of n is p.

Fixpoint sqrt_iter k p q r :=

match k with

| O => p

| S k’ => match r with

| O => sqrt_iter k’ (S p) (S (S q)) (S (S q))

65

| S r’ => sqrt_iter k’ p q r’

end

end.

Definition sqrt n := sqrt_iter n 0 0 0.

Log2

This base-2 logarithm is linear and tail-recursive. In

log2_iter, we maintain the logarithm p of the counter q, while r is

the distance between q and the next power of 2, more precisely q + S r

= 2^(S p) and r<2^p. At each recursive call, q goes up while r goes

down. When r is 0, we know that q has almost reached a power of 2, and

we increase p at the next call, while resetting r to q. Graphically

(numbers are q, stars are r) :

10

9

8

7 *

6 *

5 ...

4

3 *

2 *

1 * *

0 * * *

We stop when k, the global downward counter reaches 0. At that moment,

q is the number we’re considering (since k+q is invariant), and p its

logarithm.

Fixpoint log2_iter k p q r :=

match k with

| O => p

| S k’ => match r with

| O => log2_iter k’ (S p) (S q) q

| S r’ => log2_iter k’ p (S q) r’

end

end.

Definition log2 n := log2_iter (pred n) 0 1 0.

Iterator on natural numbers

Definition iter (n:nat) {A} (f:A->A) (x:A) : A :=

nat_rect (fun _ => A) x (fun _ => f) n.

Bitwise operations We provide here some bitwise operations for unary

numbers. Some might be really naive, they are just there for

fullfiling the same interface as other for natural representations. As

soon as binary representations such as NArith are available, it is

clearly better to convert to/from them and use their ops.

66 CHAPTER 12. COQ NAT VS AXIOM NNI

Fixpoint div2 n :=

match n with

| 0 => 0

| S 0 => 0

| S (S n’) => S (div2 n’)

end.

Fixpoint testbit a n : bool :=

match n with

| 0 => odd a

| S n => testbit (div2 a) n

end.

Definition shiftl a := nat_rect _ a (fun _ => double).

Definition shiftr a := nat_rect _ a (fun _ => div2).

Fixpoint bitwise (op:bool->bool->bool) n a b :=

match n with

| 0 => 0

| S n’ =>

(if op (odd a) (odd b) then 1 else 0) +

2*(bitwise op n’ (div2 a) (div2 b))

end.

Definition land a b := bitwise andb a a b.

Definition lor a b := bitwise orb (max a b) a b.

Definition ldiff a b := bitwise (fun b b’ => andb b (negb b’)) a a b.

Definition lxor a b := bitwise xorb (max a b) a b.

Chapter 13

Binary Power in COQ by
Casteran and Sozeau

From Casteran and Sozeau [Cast16]:

(* About integer powers (monomorphic version) *)

Set Implicit Arguments.

Require Import ZArith.

Require Import Div2.

Require Import Program.

Open Scope Z_scope.

Let us consider a simple arithmetic operation: raising some integer x to the n-th power,
where n is a natural number. The following function definition is a direct translation of the
mathematical concept:

Fixpoint power (a:Z)(n:nat) :=

match n with 0%nat => 1

| S p => a * power a p

end.

Eval vm_compute in power 2 40.

= 1099511627776 : Z

This definition can be considered as a very naive way of programming, since computing
xn requires n multiplications. Nevertheless, this definition is very simple to read, and ev-
eryone can admit that it is correct with respect to the mathematical definition. Thus, we
can consider it as a specification: when we write more efficient but less readable functions
for exponentiation, we should be able to prove their correctness by proving in Coq their
equivalence with the naive power function.

The following function allows one to compute xn, with a number of multiplications propor-
tional to log2(n):

Program

Fixpoint binary_power_mult (acc x:Z) (n:nat) {measure (fun i=>i) n} : Z

(* acc * (power x n) *) :=

match n with

67

68 CHAPTER 13. BINARY POWER IN COQ BY CASTERAN AND SOZEAU

| 0%nat => acc

| _ => if Even.even_odd_dec n

then binary_power_mult acc (x * x) (div2 n)

else binary_power_mult (acc * x) (x * x) (div2 n)

end.

Solve Obligations with program_simpl; intros; apply lt_div2; auto with arith.

Definition binary_power (x:Z)(n:nat) := binary_power_mult 1 x n.

Eval vm_compute in binary_power 2 40.

= 1099511627776 : Z

Goal binary_power 2 234 = power 2 234.

reflexivity.

Qed.

We want now to prove binary power’s correctness, i.e. that this function and the naive
power function are pointwise equivalent.

Proving this equivalence in Coq may require a lot of work. Thus it is not worth at all writing
a proof dedicated only to powers of integers. In fact, the correctness of binary power with
respect to power holds in any structure composed of an associative binary operation on
some domain, that admits a neutral element. For instance, we can compute powers of
square matrices using the most efficient of both algorithms.

Thus, let us throw away our previous definition, and try to define them in a more generic
framework.

13.1 On Monoids

Definition 2.1 A monoid is a mathematical structure composed of

• a carrier A

• a binary, associative operation ◦ on A

• a neutral element 1 ∈ A for ◦
Such a mathematical structure can be defined in Coq as a type class. [Soze08]. In the
following definition, parameterized by a type A (implicit), a binary operation dot and a
neutral element unit, three fields describe the properties that dot and unit must satisfy.

Class Monoid {A:Type}(dot : A -> A -> A)(one : A) : Prop := {

dot_assoc : forall x y z:A, dot x (dot y z) = dot (dot x y) z;

unit_left : forall x, dot one x = x;

unit_right : forall x, dot x one = x }.

Note that other definitions could have been given for representing this mathematical struc-
ture.

From an implementational point of view, such a type class is just a record type, i.e. an
inductive type with a single constructor Build Monoid

Print Monoid.

Record Monoid (A:Type)(dot : A -> A -> A)(one : A) : Prop := Build_Monoid

13.1. ON MONOIDS 69

{ dot_assoc : forall x y z:A, dot x (dot y z) = dot (dot x y) z;

one_left : forall x, dot one x = x;

one_right : forall x, dot x one = x }

For Monoid: Argument A is implicit and maximally inserted

For Build_Monoid: Argument A is implicit

For Monoid: Argument scopes are [type_scope _ _]

For Build_Monoid: Argument scopes are [type_scope _ _ _ _ _]

Nevertheless, implementation of type classes by M. Sozeau provides several specific tools —
dedicated tactics for instance –, and we advise the reader not to replace the Class keyword
with Record or Inductive.

With the command About, we can see the polymorphic type of the fields of the class Monoid:

About one_left

one_left:

forall (A : Type) (dot : A -> A -> A) (one : A),

Monoid dot one -> forall x : A, dot one x = x

Arguments A, dot, one, Monoid are implicit and maximally inserted

Argument scopes are [type_scope _ _ _ _]

one_left is transparent

13.1.1 Classes and Instances

Members of a given class are called instances of this class. Instances are defined to the
Coq system through the Instance keyword. Our first example is a definition of the monoid
structure on the set Z of integers, provided with integer multiplication, with 1 as the neutral
element. Thus we give these parameters to the Monoid class (note that Z is implicitly given).

Instance ZMult : Monoid Zmult 1

For this instance to be created, we need to prove that the binary operation Zmult is asso-
ciative and admits 1 as the neutral element. Applying the constructor Build Monoid – for
instance with the tactic split – generates three subgoals.

split.

3 subgoals

===

forall x y z : Z, x * (y * z) = x * y * z

subgoal 2 is:

forall x : Z, 1 * x = x

subgoal 3 is:

forall x : Z, x * 1 = x

Each subgoal is easily solved by intros; ring.

When the proof is finished, we register our instance with a simple Qed. Note that we used
Qed because we consider a class of sort Prop. In some cases where instances must store some
information constants, ending an instance construction with Defined may be necessary.

Check Zmult.

ZMult : Monoid Zmult 1

70 CHAPTER 13. BINARY POWER IN COQ BY CASTERAN AND SOZEAU

We explained on the preceding page why it is better to use the Class keyword than Record

or Inductive. For the same reason, the definition of an instance of some class should be
written using Instance and not Lemma, Theorem, Example, etc. nor Definition.

13.1.2 A generic definition of power

We are now able to give a definition of the function power than can be applied with any
instance of class Monoid:

A first definition could be

Fixpoint power {A:Type}{dot:A->A->A}{one:A}{M: Monoid dot one}

(a:A)(n:nat) :=

match n with 0:nat => one

| S p => dot a (power a p)

end.

Compute power 2 10.

= 1024 : Z

Happily, we can make the declaration of the three first arguments implicit, by using the
Generalizable Variables command:

Reset power.

Generalizable Variables A dot one.

Fixpoint power ‘{M: Monoid A dot one}(a:A)(n:nat) :=

match n with 0%nat => one

| S p => dot a (power a p)

end.

Compute power 2 10.

= 1024 : Z

The variables A dot one appearing in the binder for M are implicitly bound before the binder
for M and their types are inferred from the Monoid A dot one type. This syntactic sugar
helps abbreviate bindings for classes with parameters. The resulting internal Coq term is
exactly the same as the first definition above.

13.1.3 Instance Resolution

The attentive reader has certainly noticed that in the last computation, the binary operation
Zmult and the neutral element 1 need not to be given explicitly. The mechanism that allows
Coq to infer all the arguments needed by the power function to be applied is called instance
resolution.

In order to understand how it operates, let’s have a look at power’s type:

About power.

power :

forall (A : Type) (dot : A -> A -> A) (one : A),

Monoid dot one -> A -> nat -> A

Arguments A, dot, one, M are implicit and maximally inserted

13.2. MORE MONOIDS 71

Compute power 2 100.

= 1267650600228229401496703205376 : Z

Set Printing Implicit.

Check power 2 100.

@power Z Zmult 1 Zmult 2 100 : Z

Unset Printing Implicit.

We see that the instance ZMult has been inferred from the type of 2. We are in the simple
case where only one monoid of carrier Z has been declared as an instance of the Monoid class.

The implementation of type classes in Coq can retrieve the instance ZMult from the type Z,
then filling the arguments ZMult and 1 from ZMult’s definition.

13.2 More Monoids

13.2.1 Matrices over some ring

We all know that multiplication of square matrices is associative and admits identity matrices
as neutral elements. For simplicity’s sake let us restrict our study to 2 × 2 matrices over
some ring.

We first load the Ring library, then open a section with some useful declarations and nota-
tions.

Require Import Ring.

Section matrices.

Variables (A:Type)

(zero one : A)

(plus mult minus : A -> A -> A)

(sym : A -> A).

Notation "0" := zero.

Notation "1" := one.

Notation "x + y" := (plus x y).

Notation "x * y" := (mult x y).

Variable rt : ring_theory zero one plus mult minus sym (@eq A).

Add Ring Aring : rt.

We can now define a carrier type for 2× 2-matrices, as well as matrix multiplication and the
identity matrix.

Structure M2 : Type := {c00 : A; c01 : A; c10 : A; c11 : A}.

Definition Id2 : M2 := Build_M2 1 0 0 1.

Definition M2_mult (m m’:M2) : M2 :=

Build_M2 (c00 m * c00 m’ + c01 m * c10 m’)

(c00 m * c01 m’ + c01 m * c11 m’)

(c10 m * c00 m’ + c11 m * c10 m’)

(c10 m * c01 m’ + c11 m * c11 m’).

72 CHAPTER 13. BINARY POWER IN COQ BY CASTERAN AND SOZEAU

As for multiplication of integers, we can now define an instance of Monoid for the type M2.

Global Instance M2_Monoid : Monoid (M2_mult plus mult) (Id2 0 1).

split.

destruct x; destruct y; destruct z; simpl.

unfold M2_mult. apply M2_eq_intros; simpl; ring.

destruct x; simpl;

unfold M2_mult; apply M2_eq_intros; simpl; ring.

destruct x; simpl;

unfold M2_mult; apply M2_eq_intros; simpl; ring.

Qed.

End matrices.

We want now to play with 2 × 2 matrices over Z. We declare an instance M2Z for this
purpose, and can use directly the function power.

Instance M2Z : Monoid _ _ := M2_Monoid Zth.

Compute power (Build_M2 1 1 1 0) 40.

= {|

c00 := 165580141;

c01 := 102334155;

c10 := 102334155;

c11 := 63245986 |}

: M2 Z

Definition fibonacci (n:nat) :=

C00 (power (Build_M2 1 1 1 0) n).

Compute fibonacci 20.

= 10946

:Z

13.3 Reasoning within a Type Class

We are now able to consider again the equivalence between two functions for computing
powers. Let use define the binary algorithm for any monoid.

First, we define an auxiliary function. We use the Program extension to define an efficient
version of exponentiation using an accumulator. The function is defined by well-founded
recursion on the exponent n.

Function binary_power_mult (A:Type) (dot:A->A->A) (one:A)

(M: @Monoid A dot one) (acc x:A)(n:nat){measure (fun i=>i) n} : A

(* acc * (x ** n) *) :=

match n with

| 0%nat => acc

| _ => if Even.even_odd_dec n

then binary_power_mult _ acc (dot x x) (div2 n)

else binary_power_mult _ (dot acc x) (dot x x) (div2 n)

end.

intros; apply lt_div2; auto with arith.

intros; apply l2_div2; auto with arith.

Defined.

13.3. REASONING WITHIN A TYPE CLASS 73

Definition binary_power ‘{M:Monoid} x n := binary_power_mult M one x n.

Compute binary_power 2 100.

= 1267650600228229401496703205376 : Z

13.3.1 The Equivalence Proof

The proof of equivalence between power and binary power is quite long, and can be split in
several lemmas. Thus, it is useful to open a section, in which we fix some arbitrary monoid
M. Such a declaration is made with the Context command, which can be considered as a
version of Variables for declaring arbitrary instances of a given class.

Section About_power.

Require Import Arith.

Context ‘(M:Monoid A dot one).

It is good practice to define locally some specialized notations and tactics.

Ltac monoid_rw :=

rewrite (@one_left A dot one M) ||

rewrite (@one_right A dot one M)||

rewrite (@dot_assoc A dot one M).

Ltac monoid_simpl := repeat monoid_rw.

Local Infix "*" := dot.

Local Infix "**" := power (at level 30, no associativity).

13.3.2 Some Useful Lemmas About power

We start by proving some well-known equalities about powers in a monoid. Some of these
equalities are integrated later in simplification tactics.

Lemma power_x_plus : forall x n p, x ** (n + p) = x ** n * x ** p.

Proof.

induction n as [| p IHp];simpl.

intros; monoid_simpl;trivial.

intro q;rewrite (IHp q); monoid_simpl;trivial.

Qed.

Ltac power_simpl := repeat (monoid_rw || rewrite <- power_x_plus).

Lemma power_commute : forall x n p,

x ** n * x ** p = x ** p * x ** n.

Proof.

intros x n p;power_simpl; rewrite (plus_comm n p);trivial.

Qed.

Lemma power_commute_with_x : forall x n ,

x * x ** n = x ** n * x.

Proof.

74 CHAPTER 13. BINARY POWER IN COQ BY CASTERAN AND SOZEAU

induction n;simpl;power_simpl;trivial.

repeat rewrite <- (@dot_assoc A dot one M); rewrite IHn; trivial.

Qed.

Lemma power_of_power : forall x n p, (x ** n) ** p = x ** (p * n).

Proof.

induction p;simpl;[| rewrite power_x_plus; rewrite IHp]; trivial.

Qed.

Lemma power_S : forall x n, x * x ** n = x ** S n.

Proof. intros;simpl;auto. Qed.

Lemma sqr : forall x, x ** 2 = x * x.

Proof.

simpl;intros;monoid_simpl;trivial.

Qed.

Ltac factorize := repeat (

rewrite <- power_commute_with_x ||

rewrite <- power_x_plus ||

rewrite <- sqr ||

rewrite power_S ||

rewrite power_of_power).

Lemma power_of_square : forall x n, (x * x) ** n = x ** n * x ** n.

induction n;simpl;monoid_simpl;trivial.

repeat rewrite dot_assoc;rewrite IHn; repeat rewrite dot_assoc.

factorize; simpl;trivial.

Qed.

13.3.3 Final Steps

We are now able to prove that the auxiliary function binary power mult satisfies its intuitive
meaning. The proof uses well-founded induction and the lemmas proven in the previous
section.

Lemma binary_power_mult_ok :

forall n a x, binary_power_mult a x n = a * x ** n.

Proof.

intro n; pattern n;apply lt_wf_ind.

clear n; intros n Hn; destruct n.

intros;simpl; monoid_simpl; trivial.

intros; rewrite binary_power_mult_equation.

destruct (Even.even_odd_dec (S n)).

rewrite Hn. rewrite power_of_square; factorize.

pattern (S n) at 3;replace (S n) with (div2 (S n) + div2 (S n))%nat;auto.

generalize (even_double _ e);simpl;auto.

apply lt_div2;auto with arith.

rewrite Hn.

rewrite power_of_square ; factorize.

pattern (S n) at 3;replace (S n) with (S (div2 (S n) + div2 (S n)))%nat;auto.

rewrite <- dot_assoc; factorize;auto.

13.3. REASONING WITHIN A TYPE CLASS 75

generalize (odd_double _ o);intro H;auto.

apply lt_div2;auto with arith.

Qed.

Then the main theorem follows immediately:

Lemma binary_power_ok : forall (x:A) (n:nat), binary_power x n = x ** n.

Proof.

intros n x;unfold binary_power;rewrite binary_power_mult_ok;

monoid_simpl;auto.

Qed.

13.3.4 Discharging the Context

It is time to close the section we opened for writing our proof of equivalence. The theorem
binary power ok is now provided with a universal quantification over all the parameters of
any monoid.

End About_power.

About binary_power_ok.

binary_power_ok :

forall (A : Type) (dot : A -> A -> A) (one : A) (M : Monoid dot one)

(x : A) (n : nat), binary_power x n = power x n

Arguments A, dot, one M are implicit and maximally inserted

Argument scopes are [type_scope _ _ _ _ nat_scope]

binary_power_ok is opaque

Expands to Constant Top.binary_power_ok

Check binary_power_ok 2 20.

binary_power_ok 2 20

: binary_power 2 20 = power 2 20

Let Mfib := Build_M2 1 1 1 0.

Check binary_power_ok Mfib 56.

binary_power_ok Mfib 56

: binary_power Mfib 56 = power Mfib 56

13.3.5 Subclasses

We could prove many useful equalities in the section about power. Nevertheless, we couldn’t
prove the equality (xy)n = xnyn because it is false in general – consider for instance the
free monoid of strings, or simply matrix multiplication. But this equality holds in every
commutative (a.k.a Abelian) monoid.

Thus we say that Abelian monoids form a subclass of the class of monoids, and prove this
equality in a context declaring an arbitrary instance of this subclass.

Structurally, we parameterize the new class Abelian Monoid by an arbitrary instance M of
Monoid, and add a new field stating the commutativity of dot. Please keep in mind that we

76 CHAPTER 13. BINARY POWER IN COQ BY CASTERAN AND SOZEAU

declared A, dot, and one as generalizable variables, hence we can use the backquote symbol
here.

Class Abelian_Monoid ‘(M:Monoid A dot one) := {

dot_comm : forall x y, dot x y = dot y x}.

A quick look at the representation of Abelian Monoid as a record type helps us understand
how this class is implemented.

Print Abelian_Monoid.

Record Abelian_Monoid (A : Type) (dot : A -> A -> A)

(one : A) (M : Monoid dot one) : Prop := Build_Abelian_Monoid

{dot_comm : forall x y : A, dot x y = dot y x }

For Abelian_Monoid: Arguments A, dot, one are implicit and maximally inserted

For Build_Abelian_Monoid: Arguments A, dot, one are implicit

For Abelian_Monoid: Arguemnt scopes are [type_scope _ _ _]

For Build_Abelian_Monoid: Argument scopes are [type_scope _ _ _ _]

For building an instance of Abelian Monoid we can start from ZMult, the monoid on Z,
adding a proof that integer multiplication is commutative.

Instance ZMult_Abelian : Abelian_Monoid ZMult.

split.

exact Zmult_comm.

Qed.

We can now prove our equality by building an appropriate context. Note that we can specify
just the parameters of the monoid here in the binder of the Abelian monoid, an instance of
monoid on those same parameters is automatically generalized. Superclass parameters are
automatically generalized inside quote binders. Again, this is simply syntactic sugar.

Section Power_of_dot.

Context ‘{M: Monoid A} {AM:Abelian_Monoid M}.

Theorem power_of_mult : forall n x y,

power (dot x y) n = dot (power x n) (power y n).

Proof.

induction n;simpl.

rewrite one_left;auto.

intros; rewrite IHn; repeat rewrite dot_assoc.

rewrite <- (dot_assoc x y (power x n)); rewrite (dot_comm y (power x n)).

repeat rewrite dot_assoc;trivial.

Qed.

End Power_of_dot.

Check power_of_mult 3 4 5.

power_of_mult 3 4 5

: power (4 * 5) 3 = power 4 3 * power 5 3

Chapter 14

Proof Tower Layer: C11 using
CH2O

From Krebbers [Kreb17]

Module example gcd

Require Import String axiomatic simple.

Section gcd.
Context ‘{EnvSpec K}.
Hint Extern 10 (Some Readable ⊆) ⇒ transitivity (Some Writable).
Hint Extern 0 (perm locked =) ⇒

apply perm Readable locked; auto : typeclass instances.

Hint Resolve ax load’ ax var’ assert memext l’ assert eval int cast self’
assert memext r’ assert and l assert singleton eval assert int typed eval
assert eval singleton r assert eval singleton l assert and intro : exec.

Ltac exec :=
repeat match goal with A := : assert ⊢ ⇒ progress unfold A end;
simpl; eauto 20 with exec.

Definition gcd stmt : stmt K :=
”l” :; if{load (var 1)} local{uintT} (

!(var 2 ::= (
var 0 ::= load (var 1) @{ArithOp ModOp} load (var 2),,
var 1 ::= load (var 2),,
load (var 0)));;

goto ”l”
) else skip.

Lemma gcd typed : (∅,∅,[uintT%T;uintT%T]) ⊢ gcd stmt : (false,None).
Proof.
Lemma gcd correct Γ δ R J T C y z µ1 γ1 µ2 γ2 :

sep valid γ1 → Some Writable ⊆ perm kind γ1 →
sep valid γ2 → Some Writable ⊆ perm kind γ2 →

77

78 CHAPTER 14. PROOF TOWER LAYER: C11 USING CH2O

J ”l”%string ≡ {Γ,δ} (∃ y’ z’,
⌜ Z.gcd y’ z’ = Z.gcd y z ⌝%Z
var 0 7→ {µ1,γ1} #intV{uintT} y’ : uintT
var 1 7→ {µ2,γ2} #intV{uintT} z’ : uintT)%A →

Γ δ R J T C |=s

{{ var 0 7→ {µ1,γ1} #intV{uintT} y : uintT
var 1 7→ {µ2,γ2} #intV{uintT} z : uintT }}
gcd stmt

{{ var 0 7→ {µ1,γ1} #intV{uintT} (Z.gcd y z) : uintT
var 1 7→ {µ2,γ2} #intV{uintT} 0 : uintT }}.

Proof.
End gcd.

Chapter 15

Other Ideas to Explore

Computerising Mathematical Text [Kama15] explores various ways of capturing mathemat-
ical reasoning.

Chlipala [Chli15] gives a pragmatic approach to COQ.

Medina-Bulo et al. [Bulo04] gives a formal verification of Buchberger’s algorithm using ACL2
and Common Lisp.

Théry [Ther01] used COQ to check an implementation of Buchberger’s algorithm.

Pierce [Pier15] has a Software Foundations course in COQ with downloaded files in Pier15.tgz.

Spitters [Spit11] Type Classes for Mathematics in Coq. Also see http://www.eelis.net/research/math-classes/

Mahboubi [Mahb16] Mathematical Components. This book contains a proof of the Euclidean
algorithm using COQ.

Aczel [Acze13] Homotopy Type Theory

Santas [Sant95] A Type System for Computer Algebra

Homann [Homa94] algorithm schemata

Name: gcd(?a,?b)=?g
Signature: ?A × ?A → ?A
Constraints: (?A, EuclideanRing)
Definition: (?g|?a) ∧ (?g|?b) ∧ (∀c ∈?A : (c|?a) ∧ (c|?b)⇒ (c|?g))
Theorems:
gcd(u,v) = gcd(v,u)
gcd(u,v) = gcd(v, u mod v)
gcd(u,0) = u

79

80 CHAPTER 15. OTHER IDEAS TO EXPLORE

Appendix A

The Global Environment

Let S be a set. Let ◦ be a binary operation. Let + be an additive operation. Let ∗ be a
multiplicative operation.

Axiom 1 (Magma) A Magma is the set S with a closed binary operation S ◦ S → S
such that

∀a, b ∈ S ⇒ a ◦ b ∈ S

.

Axiom 2 (Semigroup) A Semigroup is a Magma with the operation ◦ that is associa-
tive such that

∀a, b, c ∈ S ⇒ (a ◦ b) ◦ c = a ◦ (b ◦ c)

Axiom 3 (Abelian Semigroup) An Abelian Semigroup is a Semigroup with the op-
eration ◦ that is commutative such that

∀a, b ∈ S ⇒ a ◦ b = b ◦ a

Axiom 4 (Monoid) A Monoid is a Semigroup with an identity element e ∈ S such
that

∀a ∈ S ⇒ e ◦ a = a ◦ e = a

Axiom 5 (Group) A Group is a Monoid with an inverse element b ∈ S and an identity
element i ∈ S such that

∀a ∈ S ∃b ∈ S ⇒ a ◦ b = b ◦ a = i

Axiom 6 (Group Unique Identity) A Group has a unique identity element e ∈ S
such that

∃e ∧ ∀a, b ∈ S ∧ a ̸= e ∧ b ̸= e⇒ a ◦ b ̸= e

Axiom 7 (Group Unique Inverse) A Group has a unique inverse element i ∈ S
such that

∃i ∧ ∀a, b ∈ S ∧ a ̸= i ∧ b ̸= i⇒ a ◦ b ̸= i

Axiom 8 (Group Right Quotient) A Group has a Right Quotient (right division)
such that

x ◦ a = b⇒ x ◦ a ◦ a−1 = b ◦ a−1 ⇒ x = b ◦ a−1

81

82 APPENDIX A. THE GLOBAL ENVIRONMENT

Axiom 9 (Group Left Quotient) A Group has a Left Quotient (left division) such
that

a ◦ x = b⇒ a−1 ◦ a ◦ x = a−1 ◦ b⇒ x = a−1 ◦ b

Axiom 10 (Abelian Group) An Abelian Group is a Group with the operation ◦ that
is commutative such that

∀a, b ∈ S ⇒ a ◦ b = b ◦ a

Axiom 11 (Abelian Group Quotient) An Abelian Group has a Quotient (division)
such that

a−1 ◦ a ◦ x = a ◦ a−1 ◦ x

Axiom 12 (Euclidean Domain) Let R be an integral domain. Let f be a function from
R\{0} to the NonNegativeInteger domain. If a and b are in R and b is nonzero, then there
are q and r in R such that a = bq + r and either r = 0 or f(r) < f(b)

Appendix B

Related work

B.1 Overview of related work

B.1.1 Adams [Adam01]

B.1.2 Ballarin [Ball95]

B.1.3 Berger and Schwichtenberg [Berg95]

The Greatest Common Divisor: A Case Study for Program Extraction from Classical Proofs.

Theorem

∀a1, a2(0 < a2 → ∃k1, k2(abs(k1a1 − k2a2)|a1 ∧ abs(k1a1 − k2a2)|a2 ∧ 0 < abs(k1a1 − k2a2)))

Proof Let a1, a2 be given and assume 0 < a2. The ideal (a1, a2) generated from a1, a2 has a
least positive element c, since 0 < a2. This element has a representation c = abs(k1a1−k2a2)
with k1, k2 ∈ N. It is a common divisor of a1 and a2 since otherwise the remainder f(ai, c)
would be a smaller positive element of the ideal. The number c ∈ (a1, a2) dividing a1 and a2
is the greatest common divisor since any common divisor of a1 and a2 must also be a divisor
of c.

(lambda (a1)

(lambda (a2)

((((((nat-rec-at ’(arrow nat (arrow nat (start nat nat))))

(lambda (k1) (lambda (k2) (cons n000 n000))))

(lambda (n)

(lambda (w)

(lambda (k1)

(lambda (2)

((((if-at ’(star nat nat))

((<-strict-nat 0) r2))

((w L21) L22))

((((if-at ’(star nat nat))

((<-strict-nat 0) r1))

83

84 APPENDIX B. RELATED WORK

((w L11 L12))

(cons k1 k2))))))))

((plus-nat a2) 1))

0)

1)))

Here we have manually introduced r1,r2,L11,L12,L21,L22 for somewhat lengthy terms cor-
responding to our abbreviations r1, →l1

. The unbound variable n000 appearing in the base
case is a dummy variable used by the system when it is asked to produce a realizing term for
the instance ⊥ → ∃kA(k) of ex-falso-quodlibet. In our case, when the existential quantifier
is of type nat one might as well pick the constant 0 (as we did in the text).

B.1.4 Cardelli [Card85]

Cardelli states that coercions are a form of ad-hoc polymorphism. Axiom allows ML-style
type inference in the interpreter. Declaring a function

f(n) == n + 1

without specifying types is possible. The function types are inferred when used and a type-
specialized version of the function is compiled. If called with different argument types it
will compile a new type-specialized version of the function as needed. Raises the distinction
between equivalence and inclusion as it occurs in subtypes (p483). The FUN language
defines Quantified Types as

QuantifiedType ::=

∀ A, Type | Universal Quantification

∃ A. Type | Existential Quantification

∀ A ⊆ Type. Type | ∃ A ⊆ Type. Type Bounded Quantification

See p516 for the Classification of Type Systems diagram.

B.1.5 Clarke [Clar91]

Clarke shows several proofs

B.1. OVERVIEW OF RELATED WORK 85

B.1.6 Crocker [Croc14]

Primary specification constructs

pre(expression-list) Declares preconditions
post(expression-list) Declares postconditions

Declares the value returned by a
function. Equivalent to post(result) ==

returns(expression) expression except that recursion is
permitted in expression

assert(expression-list) Asserts conditions
Used in class declarations to declare

invariant(expression-list) class invariants, and in typedef
declarations to declare constraints

keep(expression-list) Declares loop invariants
decrease(expression-list) Declares loop variant or recursion

variant expressions
Declares what non-local variables the
function modifies. If a function is

writes(lvalue-expression-list) declared without a writes-clause, then
a default writes-clause is constructed
based on the signature of the function

assumes(expression-list) Declares predicates to be assumed
without proof

ghost(expression-list) Declares ghost variables, functions
parameters, etc.

86 APPENDIX B. RELATED WORK

Additional specification expressions

exists identifier in Existential quantification over the
expression :- predicate elements of expression which must be

an array or an abstract collection type
exists type identifier := Existential quantification over all
predicate values of type
forall identifier in Universal quantification over the
expression :- predicate elements of expression, which must be

an array or an abstract collection type
forall type identifier :- Universal quantification over all
predicate values of type

Applies the mapping function
for identifier in expression1 expression2 to each element of
yield expression2 collection expression1, yielding a new

collection
those identifer in Selects those elements of collection
expression1 :- predicate expression1 for which predicate is

true
that identifier in Selects the single element of the
expression1 :- predicate collection expression1 for which

predicate is true
Shorthand for exists id in expression2

expression1 in expression2 :- id == expression1, where id is a new
identifier
expression must have union type, and
member must be a member of that

expression holds member type. Yields true if and only if the
value of expression was defined by
assignment or initialization through
member
Yields true if and only if no two
objects in the expression list have

disjoint(lvalue-expression-list) overlapping storage. Typically used
in preconditions to state that parameters
passed by pointer or reference refer to
distinct objects
Left-fold operator over collection

operator over expression expression. Used to express e.g.
summation of the elements of an array
When used in a postcondition, this
referes to the value of expression when
the function was entered. When used

old(expreesion) in a loop invariant, it refers to the
value of expression just before the
first iteration of the loop.

B.1. OVERVIEW OF RELATED WORK 87

B.1.7 Davenport [Dave02]

B.1.8 Davis [Davi09]

Davis creates a verified proof checker by creating a simple, obviously correct “level 1” checker
based on a few rules. A “level 2” checker is implemented and verified by level 1. This bootsrap
process continues up to level 11 which has significant power. Every level 11 proof can be
reduced to a level 1 proof, giving a solid foundation.

B.1.9 Filliatre [Fill03]

A formal method to establish software correctness can involve several steps. The first one is
the specification. A second one is a method to generate some proof obligations. And a third
one is a framework to establish their validity.

Type theory identifies types with propositions and terms with proofs, through the widely
known Curry-Howard isomorphism. There is no real difference between the usual first-order
objects of the mathematical discourse – such as naturals, sets, and so forth – and the proof
objects. The natural 2 is a first-order object of type nat, and a proof that 2 is even is a
first-order object of type even(2). One can define a function f taking as arguments a natural
n and a proof that n is even, and its type would be something like ∀n : nat.even(n) → τ .
Such a function represents a partial function on naturals, where the proof of even(n) may
be seen as a precondition. Similarly, one can define a function returning a proof term. For
instance, the function f could return a natural p and a proof that n = 2 × p. Finally, the
type of f will look like

∀n : nat.even(n)→ ∃p : nat.n = 2× p

where the proof of n = 2× p may be seen as a postcondition. More generally, a type of the
form

forallx : nat.P (x)→ ∃y : nat.Q(x, y)

is the type of a function with a precondition P and a postcondition Q. Building a term
of this type is exactly like building a function together with a proof of its correctness,
and consequently type theory appears as naturally suited for the proof of purely functional
programs.

We propose an interpretation of the Hoare triple {P}e{Q} as a proof of the above proposition
and then define a systematic construction of this proof from a given annotated program,
where the lacking proof terms are the so-called proof obligations.

The Coq Correctness tactic takes an annotated program as argument and generates a set of
goals, which are logical propositions to be proved by the user. Given an annotated program
e, the tactic Correctness applies the following steps:

1. It determines the type of computation of κ of e by the typing algorithm

2. proposition κ̂ is computed and declared as a goal

3. The partial proof term ê is computed following Definition 8 and is given to the proof
engine, using the Refine tactic developed on purpose, and each hole in ê leads to a
subgoal

4. Once the proofs are completed, the program is added to the environment and may be
used in other programs

88 APPENDIX B. RELATED WORK

Some features have been added to simplify the specification of programs – mainly, the pos-
sibility of inserting labels in the programs and referring in annotations to the value that
a reference had at the program points corresponding to those labels. In particular, a loop
invariant may mention the values of the references at some point before the loop using such
a label.

B.1.10 Frege [Freg1891]

Function and Concept seminal paper

Frühwirht [Frue91] details optimistic type systems for logic programs.

B.1.11 Harrison [Harr98, p13]

There are several examples of computer algebra results which may be checked relatively
easily:

• factoring polynomials (or numbers)

• finding GCDs of polynomials (or numbers)

• solving equations (algebraic, simultaneous, differential,...)

• finding antiderviatives

• finding closed forms for summations

In most cases the certificate is simply the answer. An exception is the GCD, where a slightly
more elaborate certificate is better for our purposes. If we ask to find the GCD of x2 − 1
and x5 + 1 using the gcd function, for example, the respons is x+ 1. How can this result be
checked? It’s certainly straightforward to check that this is a common divisor. If we don’t
want to code polynomial division ourselves in HOL, we can call the divide function, and
then simply verify the quotient as above. But how can we prove that x + 1 is the greatest
common divisor1 At first sight, there is no easy way, short of replicating something like the
Euclidean algorithm inside the logic (although that isn’t really a difficult prospect).

However, a variant GCD algorithm, called gcdex will, given polynomials p and q, produce not
just the GCD d, but also two other polynomials r and s such that d = pr+ qs. (Indeed, the
coefficients in this sort of Bezout identity follow easily from the Euclidean GCD algorithm.)
For example, applied to x2 − 1 and x5 + 1 we get the following equation:

(−x3 − x)(x2 − 1) + 1(x5 + 1) = x+ 1

This again can be checked easily, and from that, the fact that x+ 1 is the greatest common
divisor follows by an easily proved theorem, since obviously any common factor of x2 − 1
and x5+1 must, by the above equation, divide x+1 too. So here, given a certificate slightly
more elaborate than simply the answer, easy and efficient checking is possible.

1 The use of “greatest” is a misnomer: in a general ring we say that a is the GCD of b and c iff it is a
common divisor, and any other common divisor of b and c divides a. For example, both 2 and -2 are
GCDs of 8 and 10 over Z.

B.1. OVERVIEW OF RELATED WORK 89

B.1.12 Hoare [Hoar87]

Let us suppose first that they agree to confine attention to positive whole numbers (exclusing
zero). The required relationship between the parameters (x,y) and the result (z) may be
formalized as follows:

D1.1 z divides x

D1.2 z divides y

D1.3 z is the greatest of the set of numbers satisfying both conditions

D1.4 "p divides q" means "there exists a positive whole number w

such that pw=q"

D1.5 "p is the greatest member of the set S" means "p is in S, and no

member of S is strictly greater than p"

We need to check that for every pair of positive numbers x and y there exists a number z
with the properties specified in D1.3. A proof of this has three steps.

P1.1 The number one is a divisor of every number. So it is a common

divisor of every pair of numbers. This shows that the set of

common divisors of two numbers is non-empty.

P1.2 Each number is its own greatest divisor, so every set of

divisors is finite. The common subset of any two finite sets is

also finite. So the set of common divisors of two nubers is

both finite and non-empty.

P1.3 Every finite non-empty set of integers has a greatest member.

So the maximum used to define the greatest common divisor

always exists.

Here is an idealized logic program to compute the greatest common divisor of two positive
integers. To help in checking its correctness, it has been designed to preserve as far as
possible the structure and clarity of the original requirements. We assume that “isproduct”
and “differsfrom” are available as built-in predicates on positive integers.

L2.1 isdivisor(x,z) if there exists a w not greater than x such that

isproduct(z,w,x)

L2.2 iscommutative(x,y,z) if isdivisor(x,z) and isdivisor(y,z)

L2.3 isgcd(x,y,z) if iscommondiv(x,y.z) and for all w from z to x

isnotcommondiv(x,y,z)

L2.4 isnotcommondiv(x,y,z) if isnotdiv(x,z) or isnotdiv(y,z)

L2.5 isnotdiv(x,z) if for all w from 1 to x isnotproduct(z,w,x)

L2.6 isnotproduct(z,w,x) if isproduct(z,w,y) and differsfrom(y,x)

This program is a great deal more complicated than the requirements specification in the
preious section. The obvious reason is that the absence of negation in the programming
language requires explicit programming of a search through all possibilities before a negative
answer is given. In order to ensure termination a finite range for each search has to be
specified, and setting this limit requires knowledge of the application domain. For example,
in L2.3 we rely on the fact that the common divisor of two numbers cannot exceed either
number.

When restricted from using disjunction and negation the algebraic equations have to be
derived as needed by mathematical reasoning from the whole of the original specification.
For gcd we see

L3.1 The greatest divisor of x is x. So the greatest common divisor

of x and x is also x.

x = gcd(x,x) for all x

90 APPENDIX B. RELATED WORK

L3.2 If z divides x and y, it also divides x+y. So every common

divisor of x and y is also a common divisor of x+y and y.

Similarly, every common divisor of x+y and y is also a common

divisor of x and y. So the greatest of these identical sets

of common divisors are the same.

gcd(x,y) = gcd(x+y,y) for all x,y

L3.3 Every common divisor of x and y is also a common divisor of

y and x.

gcd(x,y) = gcd(y,x) for all x,y

But are the laws a complete specification, in the sense that there is aonly one function
satisfying them? Or do we need to look for more laws? A proof of completeness has to show
that for any given positive numerals p and q there is a numeral r such that the equation

r = gcd(p, q)

can be proved solely from the algebraic specification and the previously known laws of
arithmetic.

This can be shown by mathematical induction: We assume the result for all p and q strictly
less than N , and prove it for all p and q less than or equal to N . For such numbers, four
cases can be distinguished.

1. Both p and q are strictly less than N . In this case, what we have to prove is the same
as the induction hypothesis, which may be assumed without proof.

2. Both p and q are equal to N . Then the result

N = gcd(p, q)

is proved immediately by law L3.1

3. p = N and q < N . It follows that p− q is positive and less than N . By the induction
hypothesis, there is an r such that

r = gcd(p− q, q)

is deducible from the algebraic laws. One application of L3.2 then gives

r = gcd(p− q) + q, q)

which by the laws of arithmetic leads to the required conclusion

r = gcd(p, q)

4. p < n and q = N . Then there is an r such that

r = gcd(q, p)

is provable in the same way as in case (3) described above. One application of L3.3
then gives

r = gcd(p, q)

That concludes the proof that the algebraic specification is complete.

B.1. OVERVIEW OF RELATED WORK 91

Clearly there is no structural correspondence between the three clauses of the algebraic
specification and the five clauses expressing the original requirement. As a result, some
mathematical ingenuity and labour has been needed to prove that the two orthogonal speci-
fications describe (and completely describe) the same function. This labor could be avoided
by simply leaving out the original formalization of requirements in the general notations of
mathematics, and by starting instead within the more restricted equational framework of
algebra.

But this would be a mistake. The purpose of the specification is to tell the user of a
subroutine the properties of the result it produces, and to do so in a manner conducive to
the wider objectives of the program as a whole. Clearly, the user of a subroutine to compute
the greatest common divisor will be very directly interested in the fact that the result of
every subroutine call divides each of its two arguments exactly. But the algebraic law tells
us only that the same result have been obtained if the two arguments had been permuted
(L3.3) or added together (L3.2) before the call. These facts by themselves seem a lot less
directly useful.

It would also be a mistake to regard the different specification, the abstract one and the
algebraic one, as rivals or even as alternatives. They are both needed; they are essentially
complementary, and the can be used for different purposes.

Here is a functional program to compute the greatest common divisor of positive integers.

F4.1 gcd(x, y) = x if x = y
F4.2 gcd(x, y) = gcd(x− y, y) if x > y
F4.3 gcd(x, y) = gcd(y, x) if x < y

To compute the greatest common divisor of 10 and 6:

gcd(10,6) = gcd(4,6) by F4.2
= gcd(6,4) by F4.3
= gcd(2,4) by F4.2
= gcd(4,2) by F4.3
= gcd(2,2) by F4.2
= 2 by F4.1

However, the responsibility for controlling this goal-directed behavior is placed upon the
programmer, who has to prove that there is no infinite chain of substitutions. For example,
as an algebraic formula

gcd(x, y) = gcd(y, x)

is quite correct, but if this is executed as part of a functional program, it leads to an infinite
chain of substitutions. In the program shown above, this cycle is broken by ensuring that
the dangerous substitution is made only when y is strictly greater than x.

We can optimize the search for the greatest common divisor algebraically.

• L5.1 If z divides x, the 2z divides 2x. So if z is the greatest common divisor of x and
y, then 2z is a common divisor of 2x and 2y. It is therefore not greater than their
greatest common divisor

2gcd(x, y) < gcd(2x, 2y)

Conversely, if z is the greatest common divisor of 2x and 2y, then z is even and z/2 is
a common divisor of x and y.

gcd(2x, y2)/2 ≤ gcd(x, y)

92 APPENDIX B. RELATED WORK

From these two inequalities ti follows that

2gcd(x, y) = gcd(2x, 2y)

• L5.2 All divisors of an odd number are odd, and if an odd number divides 2x is also
divides x. If y is odd, the greatest common divisor of 2x and y is odd, so it is also a
common divisor of x and y

gcd(2x, y) ≤ gcd(x, y) if y is odd

Conversely, every divisor of x divides 2x

gcd(x, y) ≤ gcd(2x, y)

From these two inequalities it follows that

gcd(2x, y) = gcd(x, y) if y is odd

• L5.3 If both x and y are odd, and x is greater than y, it follows that x− y is positive
and even. So under these conditions

gcd(x, y) = gcd((x− y)/2, x)

When these equations are coded as a functional program, it becomes clear that the number
of operations required when the argument of size 2N has been reduced to about N .

A Procedural program has some assertions, generally specified as preconditions, invariants,
and postconditions.

• P6.1 x > 0 ∧ y > 0 as a precondition

• P6.2 Z = gcd(x, y) as a postcondition

• P6.3 sNgcd(X,Y) = gcd(x, y). The task of the first part is to make P6.3 true on
termination. That is easily accomplished by just one multiple assignment

N,Z, Y := 0, x, y

which can be proven by substitution

20gcd(x, y) = gcd(x, y)

• P6.4 We can show that
2NZ = gcd(x, y)

This would be obviously true if N were already zero. If N is non-zero, it can be made
closer to zero by subtracting one. But ath would amek P6.4 false, and therefore useless.
Fortunately, the truth of P6.4 can easily be restored if every subtraction of one from
N is accompanied by a doubling of Z. This can be proven by

n > 0 ∧ 2NZ = gcd(x, y)→ 2N−1(2Z) = gcd(x, y)

Since termination is obvious, we have proved the correctness of the loop

while N > 0 do N,Z := N − 1, 2X

On termination of this loop, the value of N is zero and P6.4 is still true. Consequently,
the postcondition of the whole program has been established.

B.1. OVERVIEW OF RELATED WORK 93

Having completed the first and last of the three tasks, the time has come to confess that the
middle task is the most difficult. Its precondition is P6.3 and its postcondition is P6.4. The
task can be split into four subtasks, in accordance with the following series of intermediate
assertions.

P6.3 ∧ (X odd ∨ Y odd)
P6.3 ∧ (Y add)
P6.3 ∧ (Y odd) ∧ X=Y

B.1.13 Jenks [Jenk84b]

Overview of Scratchpad.

B.1.14 Kifer [Kife91]

Typed Predicate Calculus giving declarative meaning to logic programs with type declara-
tions and type inference.

B.1.15 Meshveliani [Mesh16a]

Prejudice 1: “Proof by contradiction is not possible in constructive mathematics”

In fact: it is possible – when the relation has a decision algorithm.

Example: In most domains in computer algebra the equality relation has a decision algo-
rithm _=?_. Respecitvely, a program of the kind.

case x =? y of \{(yesx ≈ y)→ . . . ; (no x ̸= y)→ . . .}

actually applies the excluded third law to this relation.

Prejudice 2: “Programs in the verified programming tools (like Coq, Agda) do not provide
a proof itself, instead they provide an algorithm to build a proof witness for each concrete
data”.

I claim: they also provide a proof in its ordinary meaning (this is so in Agda, and I expect,
the same is with Coq).

B.1.16 [Neup13]

The case study was motivated by a master’s thesis at RISC Linz, which implemented a CA
algorithm for the greatest common divisor of multivariate polynomials in SML [Mein13].

B.1.17 Smolka [Smol89a]

details the foundations for relational logic programming with polymorphically order-sorted
data types.

B.1.18 Strub, Pierre Yves

Formal Proofs and Decision Procedures (Strub, Pierre Yves)

94 APPENDIX B. RELATED WORK

htps://www.youtube.com/watch?v=YgOoDNIT8A8

year = "2016"

Prop is a type containing other types

The inhabitants of Prop are proof types or propositions

If A:Prop and B:Prop are proof types then A->B is a proof type (implication)

A proof type is valid if there exists a program of that type

(fun (x:A) => x) is a proof of (A -> A)

Elimination of the \forall connector

\forall x,P

P{x \mapsto t}

We want to express a proof of (\forall x,P) by a function taking a t

and returning a proof of P(t)

The result type depends on the input

Dependent typ: type that depends on a value

Arithmetic (P. Cregut)

Real Arithmetic (L Pottier)

First Order Logic (P Corbineau)

Polynomial Systems (B Barras, B Gregoire, A Mahboubi)

External Oracles (N Ayache JC Filliatre)

two terms are computationally equal are considered identical

Fact fact1 A B C : (A -> B -> C) -> (A -> B) -> A -> C

fact1 = fun (A B C : Type) (HABC : A -> B -> C) (HAB : A -> B) (HA : A) =>

HABC HA (HAB HA) : forall A B C : Type, (A -> B -> C) -> (A -> B) -> A -> C

Fact fact2 A B C : (A -> B -> C) -> (A -> B) -> A -> C

fact2 = fun (A B C : Type) (X : A -> B -> C) (X0 : A -> B) (X1 : A) =>

let X2 := X X1 in let X3 := X0 X1 in unkeyed (X2 X3)

: forall A B C : (A -> B -> C) -> (A -> B) -> A -> C

Fact fact3 (m n:Z) : (1 + 2 * m <> 2 * n)%Z

fact3 - fun (m n : Z) (H : (1 + 2 * M)%Z = (2 * n)%Z) =>

let H0 :=

fact_Zmult comm 2 m (fun x : Z => (1 + x + - (2 * n))%Z = 0%Z -> False)

(fast_Zplus_comm 1 (m * 2)

(fun x : Z => (x + - (2 * n))%Z = 0%Z -> False)

(fast _Zmult_comm 2 n (fun x :Z => (M * 2 + 1 - x)%Z = 0%Z -> False)

(fast_Zopp_mult disr r n 2

(fun x : Z => (m * 2 + 1 + x)%Z = 0%Z -> False)

(fast_Zplus_comm (m * 2 + 1) (n * -2)

(fun x : Z => x = 0%Z -> False)

(fun Omega0 : (n * -2 + (m * 2 + 1))%Z = 0%Z =>

let H0 := erefl Gt in

(let H1 := erefl Gt in

fun auxiliary_1 : (1 > 0)%Z =>

OMEGA4 1 2 (n * -1 + (m * 1 + 0)) auxiliary_1 H1

(fast_OMEGA11 n (-1) (m * 1 + 0) 1 2

(eq^- 0%Z)

(fast_OMEGA11 m 1 0 1 2

B.1. OVERVIEW OF RELATED WORK 95

(fun x : Z => (n * (-1 * 2) + x)%Z = 0%Z)

Fact fact4: 2 + 2 = 4

fact4 =

eq_ind_r (eq^ - 4)

(eq_ind_r (fun _pattern_value : nat => _pattern_value_.+1 = 4)

(eq_ind_r (fun _pattern_value : nat => _pattern_value_.+2 = 4) (erefl 4) (addn0 2))

(addnS 2 0))

(addnS 2 1) : 2 + 2 = 4

\forall x,x+0 = x \forall x y, x+S(y)=S(x+y)

2+2 = 4 is proved by

|- \forall x,x+S(y)=S(x+y) |- \forall x,x+S(y)=S(x+y)

--------------------- ---------------------

|- 2+2 = S(2+1) |- S(2+1) = S(S(2+0)) |- \forall x,x+0 = x

--- ----------------

|- 2+2 = S(2+0) |- S(2+0) = 4

|- 2+2 = 4

Calculus of Construction (Coquand, Huet, 1985)

\beta convertibility

Calculus of Inductive Construction (Coquand, Paulin, 1990)

\beta convertibility + recursors for inductive types

Extensional Calculus of Construction (Oury 05)

\beta + convertible

"any terms which can be proven equal are convertible"

(BUT proof checking isn’t decidable because convertibility is not decidable)

Coq Modulo Theory (TCS’08, CSL’10, LICS’11) (Strub, Pierre Yves)

add decision procedure to conversion rule

Calculus of Presburger Constructions

\beta conversions (function evaluation)

recursor for natural numbers (def. by induction of functions and types)

a decision procedure for Presburger arithmetic in its conversion

an extraction from the proof environment of arithmtic equations

whose proof checking is decidable

\Gamma |- t:T \Gamma |- T’:s’ T ~r T’

\Gamma |- t:T’

where ~r will include

\beta-convertibility (function evaluation)

recursor for natural numbers (fixpoint+match evaluation)

validity entailment of the Presburger arithmetic

At least, the conversion must consider equal

any pair of Presburger-equal algebraic terms

Algebraic terms are all terms built from 0, S,+ and variables with the right arity

This solves our motivation examples

list n + m ~ list m + n

because n + m and m + n are algebraic and P-equal

BUT this does not define a sound logic

96 APPENDIX B. RELATED WORK

B.1.19 Sutor [Suto87]

Type inference and coercion in Scratchpad II.

B.1.20 Wijngaarden [Wijn68, Section 6, p95]

ALGOL 68 has carefully defined rules for coercion, using dereferencing, deproceduring,
widening, rowing, uniting, and voiding to transform values to the type required for further
computation.

B.1.21 McAllester, D. and Arkondas, K., [Mcal96]

”Primitive recursion is a well known syntactic restriction on recursion definitions which
guarantees termination. Unfortunately many natural definitions, such as the most common
definition of Euclid’s GCD algorithm, are not primitive recursive. Walther has recently given
a proof system for verifying termination of a broader class of definitions. Although Walther’s
system is highly automatible, the class of acceptable definitions remains only semi-decidable.
Here we simplify Walther’s calculus and give a syntactic criteria generalizes primitive recur-
sion and handles most of the examples given by Walthar. We call the corresponding class of
acceptable defintions “Walther recursive”.”,

Appendix A

Untyped Lambda in Common
Lisp

See Garret [Garr14]

This is a compiler for the untyped lambda calculus.
— lambda —

(defmacro ulambda (args body)

(if (and args (atom args)) (setf args (list args)))

(if (and (consp body) (consp (car body))) (push ’funcall body))

(if (null args)

body

‘(lambda (&rest args1)

(let ((,(first args) (first args1)))

(declare (ignorable ,(first args)))

(flet ((,(first args) (&rest args2) (apply ,(first args) args2)))

(if (rest args1)

(apply (ulambda ,(rest args) ,body) (rest args1))

(ulambda ,(rest args) ,body)))))))

———-

The factorial function.
— factorial —

(ulambda (n f)

(n (ulambda (c i)

(i (c (ulambda (f x)

(i f (f x))))))

(ulambda x f)

(ulambda x x)))

———-

The factorial of 10. factorial of 3, add 4, compute factorial of that.
— (—

97

98 APPENDIX A. UNTYPED LAMBDA IN COMMON LISP

factorial10}

(ulambda ()

((ulambda (f s) (f (s (s (s (s (f (s (s (s (ulambda (f x) x)))))))))))

(ulambda (n f) (n (ulambda (c i) (i (c (ulambda (f x) (i f (f x))))))

(ulambda x f) (ulambda x x)))

(ulambda (n f x) ((n f) (f x)))

’1+ 0))

———-

Bibliography

[Acze13] Peter et al. Aczel. Homotopy Type Theory: Univalent Foundations of Math-
ematics. Institute for Advanced Study, 2013.

Link: https://hott.github.io/book/nightly/

hott-letter-1075-g3c53219.pdf

[Adam01] Andrew A. Adams, Martin Dunstan, Hanne Gottlieben, Tom Kelsey, Ur-
sula Martin, and Sam Owre. Computer algebra meets automated theorem
proving: Integrating Maple and PVS. In Theorem proving in higher order
logics, TPHOLs 2001, pages 27–42, 2001.

Abstract: We describe an interface between version 6 of the
Maple computer algebra system with the PVS automated theo-
rem prover. The interface is designed to allow Maple users access
to the robust and checkable proof environment of PVS. We also
extend this environment by the provision of a library of proof
strategies for use in real analysis. We demonstrate examples us-
ing the interface and the real analysis library. These examples
provide proofs which are both illustrative and applicable to gen-
uine symbolic computation problems.

[Avig14] Jeremy Avigad. LEAN proof of GCD, 2014.

Link: http://github.com/leanprover/lean2/blob/master/

library/data/nat/gcd.lean

[Avig16] Jeremy Avigad. LEAN github repository, 2016.

Link: http://github.com/leanprover

[Back81] R.J.R Back. On Correct Refinement of Programs. J. Computer and System
Sciences, 23(1):49–68, 1981.

Abstract: The stepwise refinement technique is studied from a
mathematical point of view. A relation of correct refinement be-
tween programs is defined, based on the principle that refinement
steps should be correctness preserving. Refinement between pro-
grams will therefore depend on the criterion of program correct-
ness used. The application of the refinement relation in showing
the soundness of different techniques for refining programs is dis-
cussed. Special attention is given to the use of abstraction in pro-
gram construction. Refinement with respect to partial and total
correctness will be studied in more detail, both for deterministic

99

https://hott.github.io/book/nightly/hott-letter-1075-g3c53219.pdf
https://hott.github.io/book/nightly/hott-letter-1075-g3c53219.pdf
http://github.com/leanprover/lean2/blob/master/library/data/nat/gcd.lean
http://github.com/leanprover/lean2/blob/master/library/data/nat/gcd.lean
http://github.com/leanprover

100 BIBLIOGRAPHY

and nondeterministic programs. The relationship between these
refinement relations and the approximation relation of fixpoint
semantics will be studied, as well as the connection with the
predicate transformers used in program verification.

[Ball95] Clemens Ballarin, Karsten Homann, and Jacques Calmet. Theorems and
Algorithms: An Interface between Isabelle and Maple. In ISSAC 95, pages
150–157. ACM, 1995.

Abstract: Solving sophisticated mathematical problems often
requires algebraic algorithms and theorems. However, there are
no environments integrating theorem provers and computer alge-
bra systems which consistently provide the inference capabilities
of the first and the powerful arithmetic of the latter systems.
As an example for such a mechanized mathematics environment
we describe a prototype implementation of an interface between
Isabelle and Maple. It is achieved by extending the simplifier
of Isabelle through the introduction of a new class of simpli-
fication rules called evaluation rules in order to make selected
operations of Maple available, and without any modification to
the computer algebra system. Additionally, we specify syntax
translations for the concrete syntax of Maple which enables the
communication between both systems illustrated by some exam-
ples that can be solved by theorems and algorithms

Link: https://pdfs.semanticscholar.org/077e/

606f92b4095637e624a9efc942c5c63c4bc2.pdf

[Bate85] Joseph L. Bates and Robert L. Constable. Proofs as Programs. ACM
TOPLAS, 7(1), 1985.

Abstract: The significant intellectual cost of programming is
for problem solving and explaining, not for coding. Yet program-
ming systems offer mechanical assistance for the coding process
exclusively. We illustrate the use of an implemented program
development system, called PRL (’pearl’), that provides auto-
mated assistance with the difficult part. The problem and its
explained solution are seen as formal objects in a constructive
logic of the data domains. These formal explanations can be
executed at various stages of completion. The most incomplete
explanations resemble applicative programs, the most complete
are formal proofs.

[Berg95] U. Berger and H. Schwichtenberg. The Greatest Common Divisor: A Case
Study for Program Extraction from Classical Proofs. LNCS, 1158:36–46,
1995.

[Blak96] Bob Blakley. The Emperor’s Old Armor. In Proc. 1996 New Security
Paradigms Workshop. ACM, 1996.

[Bold07] Sylvie Boldo and Jean-Christophe Filliatre. Formal Verification of
Floating-Point programs.

Link: http://www-lipn.univ-paris13.fr/CerPAN/files/

ARITH.pdf

https://pdfs.semanticscholar.org/077e/606f92b4095637e624a9efc942c5c63c4bc2.pdf
https://pdfs.semanticscholar.org/077e/606f92b4095637e624a9efc942c5c63c4bc2.pdf
http://www-lipn.univ-paris13.fr/CerPAN/files/ARITH.pdf
http://www-lipn.univ-paris13.fr/CerPAN/files/ARITH.pdf

BIBLIOGRAPHY 101

[Bold07a] Sylvie Boldo and Jean-Christophe Filliatre. Formal Verification of
Floating-Point programs.

Abstract: This paper introduces a methodology to perform
formal verification of floating-point C programs. It extends an
existing tool for verification of C programs, Caduceus, with new
annotations for specific floating-point arithmetic. The Caduceus
first-order logic model for C programs is extended accordingly.
Then verification conditions are obtained in the usual way and
can be discharged interactively with the Coqa proof assistant,
using an existing Coq formalization of floating-point arithmetic.
This methodology is already implemented and has been success-
fully applied to several short floating-point programs, which are
presented in this paper.

Link: http://www.lri.fr/~filliatr/ftp/publis/

caduceus-floats.pdf

[Bold11] Sylvie Boldo and Claude Marche. Formal verification of numerical pro-
grams: from C annotated programs to mechanical proofs. Mathematics in
Computer Science, 5:377–393, 2011.

Abstract: Numerical programs may require a high level of guar-
antee. This can be achieved by applying formal methods, such
as machine-checked proofs. But these tools handle mathematical
theorems while we are interested in C code, in which numeri-
cal computations are performed using floating-point arithmetic,
whereas proof tools typically handle exact real arithmetic. To
achieve this high level of confidence on C programs, we use a
chain of tools: Frama-C, its Jessie plugin, Why and provers
among Coq, Gappa, Alt-Ergo, CVC3 and Z3. This approach
requires the C program to be annotated; each function must be
precisely specified, and we prove the correctness of the program
by proving both that it meets its specifications and that no run-
time error may occur. The purpose of this paper is to illustrate,
on various examples, the features of this approach.

Link: https://hal.archives-ouvertes.fr/hal-00777605/

document

[Book102] Axiom Authors. Volume 10.2: Axiom Algebra: Categories. Axiom Project,
2016.

Link: http://axiom-developer.org/axiom-website/

bookvol10.2.pdf

[Book103] Axiom Authors. Volume 10.3: Axiom Algebra: Domains. Axiom Project,
2016.

Link: http://axiom-developer.org/axiom-website/

bookvol10.3.pdf

[Bowe95] Jonathan P. Bowen and Michael G. Hinchey. Seven More Myths of Formal
Methods. IEEE Software, 12(4):34–41, 1995.

Abstract: New myths about formal methods are gaining tacit
acceptance both outside and inside the system-development com-

http://www.lri.fr/~filliatr/ftp/publis/caduceus-floats.pdf
http://www.lri.fr/~filliatr/ftp/publis/caduceus-floats.pdf
https://hal.archives-ouvertes.fr/hal-00777605/document
https://hal.archives-ouvertes.fr/hal-00777605/document
http://axiom-developer.org/axiom-website/bookvol10.2.pdf
http://axiom-developer.org/axiom-website/bookvol10.2.pdf
http://axiom-developer.org/axiom-website/bookvol10.3.pdf
http://axiom-developer.org/axiom-website/bookvol10.3.pdf

102 BIBLIOGRAPHY

munity. The authors address and dispel these myths based on
their observations of industrial projects. The myths include: for-
mal methods delay the development process; they lack tools;
they replace traditional engineering design methods; they only
apply to software; are unnecessary; not supported; and formal
methods people always use formal methods.

[Bres93] David Bressoud. Review of The problems of mathematics. Math. Intell.,
15(4):71–73, 1993.

[Broo87] Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, 20(4):10–19, 1987.

Abstract: Fashioning complex conceptual constructs is the
essence; accidental tasks arise in representing the constructs in
language. Past progress has so reduced the accidental tasks that
future progress now depends upon addressing the essence.

[Buch97] Bruno Buchberger. Mathematica: doing mathematics by computer? Ad-
vances in the design of symbolic computation systems, pages 2–20, 1997,
978-3-211-82844-1.

[Bulo04] I. Medina-Bulo, F. Palomo-Lozano, J.A. Alonso-Jiménez, and J.L. Ruiz-
Reina. Verified Computer Algebra in ACL2. ASIC 2004, LNAI 3249, pages
171–184, 2004.

Abstract: In this paper, we present the formal verification of
a Common Lisp implementation of Buchberger’s algorithm for
computing Groebner bases of polynomial ideals. This work is car-
ried out in the ACL2 system and shows how verified Computer
Algebra can be achieved in an executable logic.

[COQnat] COQ Proof Assistant. Library Coq.Init.Nat, 2017.

Abstract: Peano natural numbers, defintions of operations

Link: https://coq.inria.fr/library/Coq.Init.Nat.html

[Cald97] James L. Caldwell. Moving proofs-as-programs into practice. In Automated
Software Engineering. IEEE, 1997.

Abstract: Proofs in the Nuprl system, an implementation of
a constructive type theory, yield correct-by-construction pro-
grams. In this paper a new methodology is presented for ex-
tracting efficient and readable programs from inductive proofs.
The resulting extracted programs are in a form suitable for use
in hierarchical verifications in that they are amenable to clean
partial evaluation via extensions to the Nuprl rewrite system.
The method is based on two elements: specifications written
with careful use of the Nuprl set-type to restrict the extracts
to strictly computational content; and on proofs that use in-
duction tactics that generate extracts using familiar fixed-point
combinators of the untyped lambda calculus. In this paper the
methodology is described and its application is illustrated by
example.

[Calu07] C.S. Calude, E. Calude, and S. Marcus. Proving and Programming. techni-

https://coq.inria.fr/library/Coq.Init.Nat.html

BIBLIOGRAPHY 103

cal report CDMTCS-309, Centre for Discrete Mathematics and Theoretical
Computer Science, 2007.

Abstract: There is a strong analogy between proving theorems
in mathematics and writing programs in computer science. This
paper is devoted to an analysis, from the perspective of this anal-
ogy, of proof in mathematics. We will argue that while the Hilber-
tian notion of proof has few chances to change, future proofs will
be of various types, will play different roles, and their truth will
be checked differently. Programming gives mathematics a new
form of understanding. The computer is the driving force be-
hind these changes.

[Card85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstrac-
tion, and Polymorphism. ACM Computing Surveys, 17(4):471–523, 1985.

Abstract: Our objective is to understand the notion of type
in programming languages, present a model of typed, polymor-
phic programming languages that reflects recent research in type
theory, and examine the relevance of recent research to the de-
sign of practical programming languages. Object-oriented lan-
guages provide both a framework and a motivation for exploring
the interaction among the concepts of type, data abstraction,
and polymorphism, since they extend the notion of type to data
abstraction and since type inheritance is an important form of
polymorphism. We develop a λ-calculus-based model for type
systems that allows us to explore these interactions in a sim-
ple setting, unencumbered by complexities of production pro-
gramming languages. The evolution of languages from untyped
universes to monomorphic and then polymorphic type systems
is reviewed. Mechanisms for polymorphism such as overloading,
coercion, subtyping, and parameterization are examined. A uni-
fying framework for polymorphic type systems is developed in
terms of the typed λ-calculus augmented to include binding of
types by quantification as well as binding of values by abstrac-
tion. The typed λ-calculus is augmented by universal quantifica-
tion to model generic functions with type parameters, existential
quantification and packaging (information hiding) to model ab-
stract data types, and bounded quantification to model subtypes
and type inheritance. In this way we obtain a simple and precise
characterization of a powerful type system that includes abstract
data types, parametric polymorphism, and multiple inheritance
in a single consistent framework. The mechanisms for type check-
ing for the augmented λ-calculus are discussed. The augmented
typed λ-calculus is used as a programming language for a variety
of illustrative examples. We christen this language Fun because
fun instead of λ is the functional abstraction keyword and be-
cause it is pleasant to deal with. Fun is mathematically simple
and can serve as a basis for the design and implementation of real
programming languages with type facilities that are more power-
ful and expressive than those of existing programming languages.

104 BIBLIOGRAPHY

In particular, it provides a basis for the design of strongly typed
object-oriented languages

[Cast16] Pierre Casteran and Mattieu Sozeau. A Gentle Introduction to Type
Classses and Relations in Coq, 2016.

Link: http://www.labri.fr/perso/casteran/CoqArt/

TypeClassesTut/typeclassestut.pdf

[Chli15] Adam Chlipala. Certified Programming with Dependent Types. MIT Press,
2015, 9780262026659.

Link: http://adam.chlipala.net/cpdt/cpdt.pdf

[Chli17] Adam Chlipala. Formal Reasoning About Programs. MIT, 2017.

Abstract: Briefly, this book is about an approach to bringing
software engineering up to speed with more traditional engineer-
ing disciplines, providing a mathematical foundation for rigorous
analysis of realistic computer systems. As civil engineers apply
their mathematical canon to reach high certainty that bridges
will not fall down, the software engineer should apply a differ-
ent canon to argue that programs behave properly. As other
engineering disciplines have their computer-aided design tools,
computer science has proof assistants, IDEs for logical argu-
ments. We will learn how to apply these tools to certify that
programs behave as expected. More specifically: Introductions
to two intertangled subjects: the Coq proof assistant, a tool
for machine-checked mathematical theorem proving; and formal
logical reasoning about the correctness of programs.

Link: http://adam.chlipala.net/frap/frap_book.pdf

[Chli17a] Adam Chlipala. Coming Soon: Machine-Checked Mathematical Proofs in
Everyday Software and Hardware Development, 2017.

Abstract: Most working engineers view machine-checked math-
ematical proofs as an academic curiosity, if they have ever heard
of the concept at all. In contrast, activities like testing, debug-
ging, and code review are accepted as essential. They are woven
into the lives of nearly all developers. In this talk, I will explain
how I see machine-checked proofs enabling new everyday activ-
ities for developers of computer software and hardware. These
activities have the potential to lower development effort dra-
matically, at the same time as they increase our assurance that
systems behave correctly and securely. I will give a cosmological
overview of this field, answering the FAQs that seem to stand in
the way of practicality; and I will illustrate the principles with ex-
amples from projects that you can clone from GitHub today, cov-
ering the computing stack from digital hardware design to cryp-
tographic software and applications. Today’s developers of com-
puter software and hardware are tremendously effective, com-
pared to their predecessors. We have found very effective ways
of modularizing and validating our work. The talk is about am-
munition for these activities from a perhaps-unexpected source.

http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf
http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/typeclassestut.pdf
http://adam.chlipala.net/cpdt/cpdt.pdf
http://adam.chlipala.net/frap/frap_book.pdf

BIBLIOGRAPHY 105

Modularity involves breaking a complex system into a hierar-
chy of simpler pieces, which may be written and understood
separately. Structured programming (e.g., using loops and con-
ditionals instead of gotos) helps us read and understand parts of
a single function in isolation, and data abstraction lets us encap-
sulate important functionality in objects, with guarantees that
other code can only access the private data by calling public
methods. That way, we can convince ourselves that the encap-
sulated code upholds certain essential properties, regardless of
which other code it is linked with. Systematic unit testing also
helps enforce contracts for units of modularity. Each of these
techniques can be rerun automatically, to catch regressions in
evolving systems, and catch those regressions in a way that ac-
curately points the finger of responsibility to particular modules.
Validation is an important part of development that encompasses
testing, debugging, code review, and anything else that we do to
raise our confidence that the system behaves as intended. Expe-
rienced engineers know that validation tends to take up the ma-
jority of engineering effort. Often that effort involves mentally
taxing activities that would not otherwise come up in coding.
One example is thinking about test-case coverage, and another
is including instrumentation that produces traces to consult dur-
ing debugging. It is not hard for working developers to imagine
great productivity gains from better ways to break systems into
pieces or raise our confidence in those pieces. The claim I will
make in this talk is that a key source of such insights has been
neglected: machine-checked mathematical proofs. Here the ba-
sic functionality is an ASCII language for defining mathematical
objects, stating theorems about them, and giving proofs of the-
orems. Crucially, an algorithm checks that purported proofs re-
ally do establish the theorems. By going about these activities in
the style of programming, we inherit usual supporting tools like
IDEs, version control, continuous integration, and automated
build processes. But how could so esoteric a task as math proofs
call for that kind of tooling, and what does it have to do with
building real computer systems? I will explain a shared vision
to that end, developed along with many other members of my
research community. Let me try to convince you that all of the
following goals are attainable in the next 10 years.

• We will have complete computer systems implementing
moderately complex network servers for popular protocols,
proved to implement those protocols correctly, from the level
of digital circuits on up. We will remove all deployed code
(hardware or software) from the trusted computing base,
shifting our trust to much smaller specifications and proof
checkers.

• Hobbyists will be able to design new embedded comput-
ing platforms by mixing and matching open-source hard-
ware and software components, also mixing and matching

106 BIBLIOGRAPHY

the proofs of these components, guaranteeing no bugs at the
digital-abstraction level or higher, with no need for debug-
ging.

• New styles of library design will be enabled by the chance to
attach a formal behavioral specification to each library. For
instance, rank-and-file programmers will able to assemble
their own code for cryptographic protocols, with code that
looks like reference implementations in Python, but getting
performance comparable to what experts handcraft in as-
sembly today. Yet that benefit would come with no need to
trust that library authors have avoided bugs or intentional
backdoors, perhaps even including automatic proofs of cryp-
tographic security properties.

Main technical topics to cover to explain my optimism:

• The basic functionality of proof assistants and why we
should trust their conclusions

• How to think about system decomposition with specifica-
tions and proofs, including why, for most components, we
do not need to worry about specification mistakes

• The different modes of applying proof technology to check
or generate components

• The engineering techniques behind cost-effective proof au-
thoring for realistic systems

• A hardware case study: Kami, supporting component-based
digital hardware authoring with proofs

• A software case study: Fiat Cryptography, supporting
correct-by-construction auto-generation of fast code for
elliptic-curve cryptography

• Pointers to where to look next, if you would like to learn
more about this technology

Link: https://media.ccc.de/v/34c3-9105-coming_soon_

machine-checked_mathematical_proofs_in_everyday_

software_and_hardware_development

[Clar91] Edmund Clarke and Xudong Zhao. Analytica – A Theorem Prover in
Mathematica, 1991.

Link: http://www.cs.cmu.edu/~emc/papers/Conference%

20Papers/Analytica%20A%20Theorem%20Prover%20in%

20Mathematica.pdf

[Cons98] Robert L. Constable and Paul B. Jackson. Towards Integrated Systems for
Symbolic Algebra and Formal Constructive Mathematics, 1998.

Abstract: The purpose of this paper is to report on our efforts
to give a formal account of some of the algebra used in Computer
Algebra Systems (CAS). In particular, we look at the concepts
used in the so called 3rd generation algebra systems, such as

https://media.ccc.de/v/34c3-9105-coming_soon_machine-checked_mathematical_proofs_in_everyday_software_and_hardware_development
https://media.ccc.de/v/34c3-9105-coming_soon_machine-checked_mathematical_proofs_in_everyday_software_and_hardware_development
https://media.ccc.de/v/34c3-9105-coming_soon_machine-checked_mathematical_proofs_in_everyday_software_and_hardware_development
http://www.cs.cmu.edu/~emc/papers/Conference%20Papers/Analytica%20A%20Theorem%20Prover%20in%20Mathematica.pdf
http://www.cs.cmu.edu/~emc/papers/Conference%20Papers/Analytica%20A%20Theorem%20Prover%20in%20Mathematica.pdf
http://www.cs.cmu.edu/~emc/papers/Conference%20Papers/Analytica%20A%20Theorem%20Prover%20in%20Mathematica.pdf

BIBLIOGRAPHY 107

Axiom[4] and Weyl[9]. It is our claim that the Nuprl proof de-
velopment system is especially well suited to support this kind
of mathematics.

Link: http://www.nuprl.org/documents/Constable/

towardsintegrated.pdf

[Coqu16] Thierry Coquand, Gérard Huet, and Christine Paulin. The COQ Proof
Assistant, 2016.

Link: https://coq.inria.fr

[Coqu16a] Thierry Coquand, Gérard Huet, and Christine Paulin. COQ Proof Assis-
tant Library Coq.ZArith.Znumtheory, 2016.

Link: https://coq.inria.fr/library/Coq.ZArith.

Znumtheory.html

[Coqu86] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Tech-
nical Report 530, INRIA Centre de Rocquencourt, 1986.

Abstract: The Calculus of Constructions is a higher-order for-
malism for constructive proofs in natural deduction style. Every
proof is a λ-expression, typed with propositions of the under-
lying logic. By removing types we get a pure λ-expression, ex-
pressing its associated algorithm. Computing this λ-expression
corresponds roughly to cut-elimination. It is our thesis that (as
already advocated by Martin-Lof) the Curry-Howard correspon-
dence between propositions and types is a powerful paradigm for
Computer Science. In the case of Constructions, we obtain the
notion of a very high-level functional programming language,
with complex polymorphism well-suited for modules specifica-
tion. The notion of type encompasses the usual notioin of data
type, but allows as well arbitrarily complex algorithmic specifi-
cations. We develop the basic theory of a Calculus of Construc-
tions, and prove a strong normalization theorem showing that all
computations terminate. Finally, we suggest various extensions
to stronger calculi.

Link: https://hal.inria.fr/inria-00076024/document

[Croc14] David Crocker. Can C++ Be Made as Safe as SPARK? In Proc 2014
HILT, 2014, 978-1-4503-3217-0.

Abstract: SPARK offers a way to develop formally-verified soft-
ware in a language (Ada) that is designed with safety in mind
and is further restricted by the SPARK language subset. How-
ever, much critical embedded software is developed in C or C++
We look at whether and how benefits similar to those offered by
the SPARK language subset and associated tools can be brought
to a C++ development environment.

[Cyph17] Cypherpunks. Chapter 4: Verification Techniques, 2017.

Abstract: Wherein existing methods for building secure sys-
tems are examined and found wanting

Link: http://www.cypherpunks.to/~peter/04_verif_

http://www.nuprl.org/documents/Constable/towardsintegrated.pdf
http://www.nuprl.org/documents/Constable/towardsintegrated.pdf
https://coq.inria.fr
https://coq.inria.fr/library/Coq.ZArith.Znumtheory.html
https://coq.inria.fr/library/Coq.ZArith.Znumtheory.html
https://hal.inria.fr/inria-00076024/document
http://www.cypherpunks.to/~peter/04_verif_techniques.pdf

108 BIBLIOGRAPHY

techniques.pdf

[Dave02] James H. Davenport. Equality in computer algebra and beyond. J. Sym-
bolic Computing, 34(4):259–270, 2002.

Abstract: Equality is such a fundamental concept in mathe-
matics that, in fact, we seldom explore it in detail, and tend
to regard it as trivial. When it is shown to be non-trivial, we
are often surprised. As is often the case, the computerization of
mathematical computation in computer algebra systems on the
one hand, and mathematical reasoning in theorem provers on the
other hand, forces us to explore the issue of equality in greater
detail.In practice, there are also several ambiguities in the def-
inition of equality. For example, we refer to Q(x) as “rational

functions”, even though x2−1
x−1 and x + 1 are not equal as func-

tions from R to R, since the former is not defined at x = 1, even
though they are equal as elements of Q(x). The aim of this paper
is to point out some of the problems, both with mathematical
equality and with data structure equality, and to explain how
necessary it is to keep a clear distintion between the two.

Link: http://www.calculemus.net/meetings/siena01/

Papers/Davenport.pdf

[Davi09] Jared Curran Davis. A Self-Verifying Theorem Prover. PhD thesis, Uni-
versity of Texas at Austin, 2009.

Abstract: Programs have precise semantics, so we can use
mathematical proof to establish their properties. These proofs
are often too large to validate with the usual social process of
mathematics, so instead we create and check them with theorem-
proving software. This software must be advanced enough to
make the proof process tractable, but this very sophistication
casts doubt upon the whole enterprise: who verifies the verifier?
We begin with a simple proof checker, Level 1, that only accepts
proofs composed of the most primitive steps, like Instantiation
and Cut. This program is so straightforward the ordinary, social
process can establish its soundness and the consistency of the log-
ical theory it implements (so we know theorems are always true).
Next, we develop a series of increasingly capable proof checkers,
Level 2, Level 3, etc. Each new proof checker accepts new kinds
of proof steps which were not accepted in the previous levels. By
taking advantage of these new proof steps, higher-level proofs
can be written more concisely than lower-level proofs, and can
take less time to construct and check. Our highest-level proof
checker, Level 11, can be thought of as a simplified version of
the ACL2 or NQTHM theorem provers. One contribution of this
work is to show how such systems can be verified. To estab-
lish that the Level 11 proof checker can be trusted, we first use
it, without trusting it, to prove the fidelity of every Level n to
Level 1: whenever Level n accepts a proof of some ϕ, there exists
a Level 1 proof of ϕ. We then mechanically translate the Level
11 proof for each Level n into a Level n 1 proofthat is, we create

http://www.cypherpunks.to/~peter/04_verif_techniques.pdf
http://www.cypherpunks.to/~peter/04_verif_techniques.pdf
http://www.calculemus.net/meetings/siena01/Papers/Davenport.pdf
http://www.calculemus.net/meetings/siena01/Papers/Davenport.pdf

BIBLIOGRAPHY 109

a Level 1 proof of Level 2s fidelity, a Level 2 proof of Level 3s
fidelity, and so on. This layering shows that each level can be
trusted, and allows us to manage the sizes of these proofs. In
this way, our system proves its own fidelity, and trusting Level
11 only requires us to trust Level 1.

[Davi15] Jared Davis and Magnus O. Myreen. The Reflective Milawa Theorem
Prover is Sound. J. Automated Reasoning, 55(2):117–183, 2015.

Abstract: This paper presents, we believe, the most compre-
hensive evidence of a theorem provers soundness to date. Our
subject is the Milawa theorem prover. We present evidence of its
soundness down to the machine code. Milawa is a theorem prover
styled after NQTHM and ACL2. It is based on an idealised ver-
sion of ACL2s computational logic and provides the user with
high-level tactics similar to ACL2s. In contrast to NQTHM and
ACL2, Milawa has a small kernel that is somewhat like an LCF-
style system. We explain how the Milawa theorem prover is con-
structed as a sequence of reflective extensions from its kernel.
The kernel establishes the soundness of these extensions during
Milawas boot-strapping process. Going deeper, we explain how
we have shown that the Milawa kernel is sound using the HOL4
theorem prover. In HOL4, we have formalized its logic, proved
the logic sound, and proved that the source code for the Milawa
kernel (1,700 lines of Lisp) faithfully implements this logic. Go-
ing even further, we have combined these results with the x86
machine-code level verification of the Lisp runtime Jitawa. Our
top-level theorem states that Milawa can never claim to prove
anything that is false when it is run on this Lisp runtime.

[Demi79] Richard A. DeMilo, Richard J. Lipton, and Alan J. Perlis. Social Processes
and Proofs of Theorems and Programs. Communications of the ACM,
22(5):271–280, 1979.

Abstract: It is argued that formal verifications of programs, no
matter how obtained, will not play the same key role in the devel-
opment of computer science and software engineering as proofs
do in mathematics. Furthermore the absence of continuity, the
inevitability of change, and the complexity of specification of
significantly many real programs make the formal verification
process difficult to justify and manage. It is felt that ease of for-
mal verification should not dominate program language design.

[Dijk83] Edsger Dijkstra. Fruits of Misunderstanding, 1983.

Link: https://www.cs.utexas.edu/users/EWD/

transcriptions/EWD08xx/EWD854.html

[Domi18] Domipheus. Designing a CPU in VHDL, 2018.

Abstract: A VHDL CPU

Link: http://labs.domipheus.com/blog/

tpu-series-quick-links

[Fent93] Norman Fenton. How Effective Are Software Engineering Methods. J.

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD854.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD854.html
http://labs.domipheus.com/blog/tpu-series-quick-links
http://labs.domipheus.com/blog/tpu-series-quick-links

110 BIBLIOGRAPHY

Systems Software, 22:141–148, 1993.

Abstract: For 25 years, software engineers have sought methods
which they hope can provide a technological fix for the software
crisis. Proponents of specific methods claim that their use leads
to significantly improved quality and productivity. Such claims
are rarely, if ever, backed up by hard evidence. We show that
often, where real empirical evidence does exist, the results are
counter to the views of the so-called experts. We examine the
impact on the software industry of continuing to place our trust
in unproven, and often revolutionary, methods. The very poor
state of the art of empirical assessment in software engineering
can be explained in part by inappropriate or inadequate use of
measurement. Numerous empirical studies are flawed because of
their poor experimental design and lack of adherence to proper
measurement principles.

[Fetz88] James H. Fetzer. Program Verification: The Very Idea. Communications
of the ACM, 31(9):1048–1063, 1988.

Abstract: The notion of program verification appears to trade
upon an equvocation. Algorithms, as logical structures, are ap-
propriate subjects for deductive verification. Programs, as causal
models of those structures, are not. The success of program veri-
fication as a generally applicable and completely reliable method
for guaranteeing program performance is not even a theoretical
possibility.

[Fill03] Jean-Christophe Filliatre. Verification of Non-Functional Programs using
Interpretations in Type Theory. J. Functional Programming, 13(4):709–
745, 2003.

Abstract: We study the problem of certifying programs com-
bining imperative and functional features within the general
framework of type theory. Type theory is a powerful specification
language, which is naturally suited for the proof of purely func-
tional programs. To deal with imperative programs, we propose a
logical interpretation of an annotated program as a partial proof
of its specification. The construction of the corresponding partial
proof term is based on a static analysis of the effects of the pro-
gram which excludes aliases. The missing subterms in the partial
proof term are seen as proof obligations, whose actual proofs are
left to the user. We show that the validity of those proof obli-
gations implies the total correctness of the program. This work
has been implemented in the Coq proof assistant. It appears as
a tactic taking an annotated program as argument and generat-
ing a set of proof obligations. Several nontrivial algorithms have
been certified using this tactic.

[Fill13] Jean-Christophe Filliatre and Andrei Paskevich. Why3 – Where Programs
Meet Provers. LNCS, 7792, 2013.

Abstract: We present Why3, a tool for deductive program ver-
ification, and WhyML, its programming and specification lan-

BIBLIOGRAPHY 111

guage. WhyML is a first-order language with polymorphic types,
pattern matching, and inductive predicates. Programs can make
use of record types with mutable fields, type invariants, and
ghost code. Verification conditions are discharged by Why3 with
the help of various existing automated and interactive theorem
provers. To keep verification conditions tractable and compre-
hensible, WhyML imposes a static control of aliases that obvi-
ates the use of a memory model. A user can write WhyML pro-
grams directly and get correct-by-construction OCaml programs
via an automated extraction mechanism. WhyML is also used as
an intermediate language for the verification of C, Java, or Ada
programs. We demonstrate the benefits of Why3 and WhyML
on non-trivial examples of program verification.

Link: https://hal.inria.fr/hal-00789533/document

[Floy67] Robert W. Floyd. Assigning Meanings to Programs. In Proc. Symp. in
Applied Mathematics, pages 19–32. American Mathematical Society, 1967.

[Frad08] Maria Joao Frade. Calculus of Inductive Construction. Software Formal
Verification. MFES, 2008.

Link: http://www4.di.uminho.pt/~jno/mfes/0809/

SFV-CIC.pdf

[Freg1891] Gottlob Frege. Function and Concept, 1891.

Link: http://fitelson.org/proseminar/frege_fac.pdf

[Frue91] Thom Fruehwirth, Ehud Shapiro, Moshe Y. Vardi, and Eyal Yardeni. Logic
programs as types for logic programs. In Proc. Sixth Annual IEEE Symp.
on Logic in Comp. Sci., pages 300–309. IEEE, 1991.

Abstract: Type checking can be extremely useful to the pro-
gram development process. Of particular interest are descriptive
type systems, which let the programmer write programs without
having to define or mention types. We consider here optimistic
type systems for logic programs. In such systems types are con-
servative approximations to the success set of the program pred-
icates. We propose the use of logic programs to describe types.
We argue that this approach unifies the denotational and op-
erational approaches to descriptive type systems and is simpler
and more natural than previous approaches. We focus on the
use of unary-predicate programs to describe types. We identify
a proper class of unary-predicate programs and show that it is
expressive enough to express several notions of types. We use
an analogy with 2-way automata and a correspondence with al-
ternating algorithms to obtain a complexity characterization of
type inference and type checking. This characterization was fa-
cilitated by the use of logic programs to represent types.

[Garr14] Ron Garret. The Awesome Power of Theory, 2014.

Link: http://www.flownet.com/ron/lambda-calculus.html

[Glas02] Robert L. Glass. The Proof of Correctness Wars. Communications of the
ACM, 45(8):19–21, 2002.

https://hal.inria.fr/hal-00789533/document
http://www4.di.uminho.pt/~jno/mfes/0809/SFV-CIC.pdf
http://www4.di.uminho.pt/~jno/mfes/0809/SFV-CIC.pdf
http://fitelson.org/proseminar/frege_fac.pdf
http://www.flownet.com/ron/lambda-calculus.html

112 BIBLIOGRAPHY

[Hall90] Anthony Hall. 7 Myths of Formal Methods. IEEE Software, 7(5):11–19,
1990.

Abstract: Formal methods are difficult, expensive, and not
widely useful, detractors say. Using a case study and other real-
world examples, this article challenges such common myths.

[Hard13] David S. Hardin, Jedidiah R. McClurg, and Jennifer A. Davis. Creating
Formally Verified Components for Layered Assurance with an LLVM to
ACL2 Translator.

Abstract: This paper describes an effort to create a library of
formally verified software component models from code that have
been compiled using the Low-Level Virtual Machine (LLVM) in-
termediate form. The idea is to build a translator from LLVM to
the applicative subset of Common Lisp accepted by the ACL2
theorem prover. They perform verification of the component
model using ACL2’s automated reasoning capabilities.

Link: http://www.jrmcclurg.com/papers/law_2013_paper.

pdf

[Hard14] David S. Hardin, Jennifer A. Davis, David A. Greve, and Jedidiah R.
McClurg. Development of a Translator from LLVM to ACL2.

Abstract: In our current work a library of formally verified
software components is to be created, and assembled, using the
Low-Level Virtual Machine (LLVM) intermediate form, into sub-
systems whose top-level assurance relies on the assurance of the
individual components. We have thus undertaken a project to
build a translator from LLVM to the applicative subset of Com-
mon Lisp accepted by the ACL2 theorem prover. Our translator
produces executable ACL2 formal models, allowing us to both
prove theorems about the translated models as well as validate
those models by testing. The resulting models can be translated
and certified without user intervention, even for code with loops,
thanks to the use of the def::ung macro which allows us to de-
fer the question of termination. Initial measurements of concrete
execution for translated LLVM functions indicate that perfor-
mance is nearly 2.4 million LLVM instructions per second on a
typical laptop computer. In this paper we overview the trans-
lation process and illustrate the translator’s capabilities by way
of a concrete example, including both a functional correctness
theorem as well as a validation test for that example.

Link: http://arxiv.org/pdf/1406.1566

[Harp13] Robert Harper. 15.819 Homotopy Type Theory Course, 2013.

Link: http://www.cs.cmu.edu/~rwh/courses/hott

[Harr98] J. Harrison and L. Thery. A Skeptic’s approach to combining HOL and
Maple. J. Autom. Reasoning, 21(3):279–294, 1998.

Abstract: We contrast theorem provers and computer algebra
systems, pointing out the advantages and disadvantages of each,
and suggest a simple way to achieve a synthesis of some of the

http://www.jrmcclurg.com/papers/law_2013_paper.pdf
http://www.jrmcclurg.com/papers/law_2013_paper.pdf
http://arxiv.org/pdf/1406.1566
http://www.cs.cmu.edu/~rwh/courses/hott

BIBLIOGRAPHY 113

best features of both. Our method is based on the systematic
separation of search for a solution and checking the solution,
using a physical connection between systems. We describe the
separation of proof search and checking in some detail, relating
it to proof planning and to the complexity class NP, and discuss
different ways of exploiting a physical link between systems. Fi-
nally, the method is illustrated by some concrete examples of
computer algebra results proved formally in the HOL theorem
prover with the aid of Maple.

Link: http://www.cl.cam.ac.uk/~jrh13/papers/cas.ps.gz

[Hoar69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. CACM,
12(10):576–580, 1969.

Abstract: In this paper an attempt is made to explore the log-
ical foundations of computer programming by use of techniques
which were first applied in the study of geometry and have later
been extended to other branches of mathematics. This involves
the elucidation of sets of axioms and rules of inference which can
be used in proofs of the properties of computer programs. Exam-
ples are given of such axioms and rules, and a formal proof of a
simple theorem is displayed. Finally, it is argued that important
advantages, both theoretical and practical, may follow from a
pursuance of these topics

Link: https://www.cs.cmu.edu/~crary/819-f09/Hoare69.

pdf

[Hoar87] Charles Antony Richard Hoare. An Overview of Some Formal Methods for
Program Design. Computer, 20(9), 1987.

[Hoar96] C.A.R Hoare. How did software get so reliable without proof? LNCS,
1051, 1996.

Abstract: By surveying current software engineering practice,
this paper reveals that the techniques employed to achieve relia-
bility are little different from those which have proved effective in
all other branches of modern engineering: rigorous management
of procedures for design inspection and review; quality assurance
based on a wide range of targeted tests; continuous evolution by
removal of errors from products already in widespread use; and
defensive programming, among other forms of deliberate over-
engineering. Formal methods and proof play a small direct role
in large scale programming; but they do provide a conceptual
framework and basic understanding to promote the best of cur-
rent practice, and point directions for future improvement.

[Homa94] Karsten Homann and Jacques Calmet. Combining Theorem Proving and
Symbolic Mathematical Computing. LNCS, 958:18–29, 1994.

Abstract: An intelligent mathematical environment must en-
able symbolic mathematical computation and sophisticated rea-
soning techniques on the underlying mathematical laws. This
paper disscusses different possible levels of interaction between a

http://www.cl.cam.ac.uk/~jrh13/papers/cas.ps.gz
https://www.cs.cmu.edu/~crary/819-f09/Hoare69.pdf
https://www.cs.cmu.edu/~crary/819-f09/Hoare69.pdf

114 BIBLIOGRAPHY

symbolic calculator based on algebraic algorithms and a theorem
prover. A high level of interaction requires a common knowledge
representation of the mathematical knowledge of the two sys-
tems. We describe a model for such a knowledge base mainly
consisting of type and algorithm schemata, algebraic algorithms
and theorems.

[Jack95] Paul Bernard Jackson. Enhancing the NUPRL Proof Development System
and Applying it to Computational Abstract Algebra. PhD thesis, Cornell
University, 1 1995.

Abstract: This thesis describes substantial enhancements that
were made to the software tools in the Nuprl system that are
used to interactively guide the production of formal proofs. Over
20,000 lines of code were written for these tools. Also, a cor-
pus of formal mathematics was created that consists of roughly
500 definitions and 1300 theorems. Much of this material is of a
foundational nature and supports all current work in Nuprl. This
thesis concentrates on describing the half of this corpus that is
concerned with abstract algebra and that covers topics central to
the mathematics of the computations carried out by computer
algebra systems. The new proof tools include those that solve lin-
ear arithmetic problems, those that apply the properties of order
relations, those that carry out inductive proof to support recur-
sive definitions, and those that do sophisticated rewriting. The
rewrite tools allow rewriting with relations of differing strengths
and take care of selecting and applying appropriate congruence
lemmas automatically. The rewrite relations can be order rela-
tions as well as equivalence relations. If they are order relations,
appropriate monotonicity lemmas are selected. These proof tools
were heavily used throughout the work on computational alge-
bra. Many examples are given that illustrate their operation and
demonstrate their effectiveness. The foundation for algebra in-
troduced classes of monoids, groups, ring and modules, and in-
cluded theories of order relations and permutations. Work on
finite sets and multisets illustrates how a quotienting operation
hides details of datatypes when reasoning about functional pro-
grams. Theories of summation operators were developed that
drew indices from integer ranges, lists and multisets, and that
summed over all the classes mentioned above. Elementary fac-
torization theory was developed that characterized when cancel-
lation monoids are factorial. An abstract data type for the op-
erations of multivariate polynomial arithmetic was defined and
the correctness of an implementation of these operations was
verified. The implementation is similar to those found in current
computer algebra systems. This work was all done in Nuprl’s
constructive type theory. The thesis discusses the appropriate-
ness of this foundation, and the extent to which the work relied
on it.

Keyword: axiomref, CAS-Proof, printed

BIBLIOGRAPHY 115

[Jenk84b] Richard D. Jenks. A primer: 11 keys to New Scratchpad. In Proc. EU-
ROSAM ISSAC 1984, pages 123–147. Springer-Verlag, 1984, 0-387-13350-
X.

Abstract: This paper is an abbreviated primer for the language
of new SCRATCHPAD, a new implementation of SCRATCH-
PAD which has been under design and development by the Com-
puter Algebra Group at the IBM Research Center during the
past 6 years. The basic design goals of the new SCRATCHPAD
language and interface to the user are to provde:

• a “typeless” interactive language suitable for on-line solution
of mathematical problems by novice users with little or no
programming required, and

• a programming language suitable for the formal description
of algorithms and algebraic structures which can be compiled
into run-time efficient object code.

The new SCRATCHPAD language is introduced by 11 keys with
each successive key introducing an additional capability of the
language. The language is thus described as a “concentric” lan-
guage with each of the 11 levels corresponding to a language
subset. These levels are more than just a pedagogic device, since
they correspond to levels at which the system can be effectively
used. Level 1 is sufficient for naive interactive use; levels 2-8
progressively introduce interactive users to capabilities of the
language; levels 9-11 are for system programmers and advanced
users. Levesl 2, 4, 6, and 7 give users the full power of LISP with a
high-level language; level 8 introduces “type declarations;” level
9 allows polymorphic functions to be defined and compiled; lev-
els 10-11 give users an Ada-like facility for defining types and
packages (those of new SCRATCHPAD are dynamically con-
structable, however). One language is used for both interactive
and system programming language use, although several free-
domes such as abbreviation and optional type-declarations al-
lowed at top-level are not permitted in system code. The inter-
active language (levels 1-8) is a blend of original SCRATCHPAD
[GRJY75], some proposed extensions [JENK74], work by Loos
[LOOS74], SETL [DEWA79], SMP [COWO81], and new ideas;
the system programming language (levels 1-11) superficially re-
sembles Ada but is more similar to CLU [LISK74] in its seman-
tic design. This presentation of the language in this paper omits
many details to be covered in the SCRATCHPAD System Pro-
gramming Manual [SCRA84] and an expanded version of this
paper will serve as a primer for SCRATCHPAD users [JESU84].

[Juds15] Thomas W. Judson. Abstract Algebra: Theory and Applications. Website,
2015.

Link: http://abstract.ups.edu/aata/colophon-1.html

[Kama15] Fairouz Kamareddine, Joe Wells, Christoph Zengler, and Henk Barendregt.
Computerising Mathematical Text, 2015.

http://abstract.ups.edu/aata/colophon-1.html

116 BIBLIOGRAPHY

Abstract: Mathematical texts can be computerised in many
ways that capture differing amounts of the mathematical mean-
ing. At one end, there is document imaging, which captures
the arrangement of black marks on paper, while at the other
end there are proof assistants (e.g. Mizar, Isabelle, Coq, etc.),
which capture the full mathematical meaning and have proofs
expressed in a formal foundation of mathematics. In between,
there are computer typesetting systems (e.g. Latex and Presen-
tation MathML) and semantically oriented systems (e.g. Content
MathML, OpenMath, OMDoc, etc.). In this paper we advocate
a style of computerisation of mathematical texts which is flex-
ible enough to connect the diferent approaches to computerisa-
tion, which allows various degrees of formalsation, and which
is compatible with different logical frameworks (e.g. set theory,
category theory, type theory, etc.) and proof systems. The basic
idea is to allow a man-machine collaboration which weaves hu-
man input with machine computation at every step in the way.
We propose that the huge step from informal mathematics to
fully formalised mathematics be divided into smaller steps, each
of which is a fully developed method in which human input is
minimal.

[Kife91] Michael Kifer and James Wu. A First-order Theory of Types and Poly-
morphism in Logic Programming. In Proc Sixth Annual IEEE Symp. on
Logic in Comp. Sci., pages 310–321, 1991.

Abstract: A logic called typed predicate calculus (TPC) that
gives declarative meaning to logic programs with type decla-
rations and type inference is introduced. The proper interac-
tion between parametric and inclusion varieties of polymorphism
is achieved through a construct called type dependency, which
is analogous to implication types but yields more natural and
succinct specifications. Unlike other proposals where typing has
extra-logical status, in TPC the notion of type-correctness has
precise model-theoretic meaning that is independent of any spe-
cific type-checking or type-inference procedure. Moreover, many
different approaches to typing that were proposed in the past can
be studied and compared within the framework of TPC. Another
novel feature of TPC is its reflexivity with respect to type dec-
larations; in TPC, these declarations can be queried the same
way as any other data. Type reflexivity is useful for browsing
knowledge bases and, potentially, for debugging logic programs.

[Kreb17] Robbert Jan Krebbers. The CH2O formalization of ISO C11, 2017.

Link: http://robbertkrebbers.nl/research/ch2o/

[Lamp02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002, 0-321-14306-X.

Link: http://research.microsoft.com/en-us/um/people/

lamport/tla/book-02-08-08.pdf

[Lamp14] Leslie Lamport. How to Write a 21st Century Proof, 2014.

Abstract: A method of writing proofs is described that makes

http://robbertkrebbers.nl/research/ch2o/
http://research.microsoft.com/en-us/um/people/lamport/tla/book-02-08-08.pdf
http://research.microsoft.com/en-us/um/people/lamport/tla/book-02-08-08.pdf

BIBLIOGRAPHY 117

it harder to prove things that are not true. The method, based
on hierarchical structuring, is simple and practical. The author’s
twenty years of experience writing such proofs is discussed.

Link: http://research.microsoft.com/en-us/um/people/

lamport/pubs/paper.pdf

[Lamp14a] Leslie Lamport. Talk: How to Write a 21st Century Proof, 2014.

Comment: 2nd Heidelberg Laureate Forum Lecture Tuesday
Sep 23, 2014

Link: http://hits.mediasite.com/mediasite/Play/

29d825439b3c49f088d35555426fbdf81d

[Lamp16] Leslie Lamport. TLA+ Proof System, 2016.

Abstract: Demonstration of Euclid Algorithm Proof in TLA+

Link: https://tla.msr-inria.inria.fr/tlaps/content/

Documentation/Tutorial/The_example.html

[Mahb16] Assia Mahboubi, Enrico Tassi, Yves Bertot, and Georges Gonthier. Math-
ematical Components. math-comp.github.io/mcb, 2016.

Abstract: Mathematical Components is the name of a library
of formalized mathematic for the COQ system. It covers a veriety
of topics, from the theory of basic data structures (e.g. numbers,
lists, finite sets) to advanced results in various flavors of alge-
bra. This library constitutes the infrastructure for the machine-
checked proofs of the Four Color Theorem and the Odd Order
Theorem. The reason of existence of this books is to break down
the barriers to entry. While there are several books around cov-
ering the usage of the COQ system and the theory it is based on,
the Mathematical Components library is build in an unconven-
tional way. As a consequence, this book provides a non-standard
presentation of COQ, putting upfront the formalization choices
and the proof style that are the pillars of the library. This book
targets two classes of public. On one hand, newcomers, even the
more mathematically inclined ones, find a soft introduction to
the programming language of COQ, Gallina, and the Ssreflect
proof language. On the other hand accustomed COQ users find
a substantial accound of the formalization style that made the
Mathematical Components library possible. By no means does
this book pretend to be a complete description of COQ or Ssre-
flect: both tools already come with a comprehensive user manual.
In the course of the book, the reader is nevertheless invited to
experiment with a large library of formalized concepts and she
is given as soon as possible sufficient tools to prove non-trivial
mathematical results by reusing parts of the library. By the end
of the first part, the reader has learnt how to prove formally the
infinitude of prime numbers, or the correctnes of the Euclidean’s
division algorithm, in a few lines of proof text.

Link: https://math-comp.github.io/mcb/book.pdf

[Mann78] Zohar Manna and Richard Waldinger. The Logic of Computer Program-

http://research.microsoft.com/en-us/um/people/lamport/pubs/paper.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paper.pdf
http://hits.mediasite.com/mediasite/Play/29d825439b3c49f088d35555426fbdf81d
http://hits.mediasite.com/mediasite/Play/29d825439b3c49f088d35555426fbdf81d
https://tla.msr-inria.inria.fr/tlaps/content/Documentation/Tutorial/The_example.html
https://tla.msr-inria.inria.fr/tlaps/content/Documentation/Tutorial/The_example.html
https://math-comp.github.io/mcb/book.pdf

118 BIBLIOGRAPHY

ming. IEEE Trans. on Software Engineering, 4(3), 1978.

Abstract: Techniques derived from mathematical logic promise
to provide an alternative to the conventional methodology for
constructing, debugging, and optimizing computer programs. Ul-
timately, these techniques are intended to lead to the automation
of many of the facets of the programming process. This paper
provides a unified tutorial exposition of the logical techniques,
illustrating each with examples. The strengths and limitations of
each technique as a practial programming aid are assessed and
attempts to implement these methods in experimental systems
are discussed.

[Mart79] P. Martin-Lof. Constructive Mathematics and Computer Programming. In
Proc. 6th Int. Congress for Logic, Methodology and Philosophy of Science,
pages 153–179. North-Holland, 1979.

Abstract: If programming is understood not as the writing of
instructions for this or that computing machine but as the de-
sign of methods of computation that it is the computer’s duty
to execute (a difference that Dijkstra has referred to as the dif-
ference between computer science and computing science), then
it no longer seems possible to distinguish the discipline of pro-
gramming from constructive mathematics. This explains why the
intuitionistic theory of types, which was originally developed as a
symbolism for the precise codification of constructive mathemat-
ics, may equally well be viewed as a programming language. As
such it provides a precise notation not only, like other program-
ming languages, for the programs themselves but also for the
tasks that the programs are supposed to perform. Moreover, the
inference rules of the theory of types, which are again completely
formal, appear as rules of correct program synthesis. Thus the
correctness of a program written in the theory of types is proved
formally at the same time as it is being synthesized.

[Maso86] Ian A. Mason. The Semantics of Destructive Lisp. Center for the Study
of Language and Information, 1986, 0-937073-06-7.

Abstract: Our basic premise is that the ability to construct and
modify programs will not improve without a new and compre-
hensive look at the entire programming process. Past theoretical
research, say, in the logic of programs, has tended to focus on
methods for reasoning about individual programs; little has been
done, it seems to us, to develop a sound understanding of the
process of programming – the process by which programs evolve
in concept and in practice. At present, we lack the means to
describe the techniques of program construction and improve-
ment in ways that properly link verification, documentation and
adaptability.

[Mcal96] D. McAllester and K. Arkondas. Walther Recursion. In CADE 13.
Springer-Verlag, 1996.

Abstract: Primitive recursion is a well known syntactic restric-

BIBLIOGRAPHY 119

tion on recursion definitions which guarantees termination. Un-
fortunately many natural definitions, such as the most common
definition of Euclid’s GCD algorithm, are not primitive recur-
sive. Walther has recently given a proof system for verifying ter-
mination of a broader class of definitions. Although Walther’s
system is highly automatible, the class of acceptable definitions
remains only semi-decidable. Here we simplify Walther’s calcu-
lus and give a syntactic criteria generalizes primitive recursion
and handles most of the examples given by Walthar. We call the
corresponding class of acceptable defintions “Walther recursive”.

[Mein13] Diana Meindl. Implementation of an Algorithm Computing the Greatest
Common Divisor for Multivariate Polynomials. Master’s thesis, RISC Linz,
2013.

[Mesh16a] Sergei D. Meshveliani. Provable programming of algebra: particular points,
examples, 2016.

Abstract: It is discussed an experiance in provable program-
ming of a computer algebra library with using a purely func-
tional language with dependent tyhpes (Agda). There are given
several examples illustrating particular points of implementing
the approach of constructive mathematics.

Link: http://www.botik.ru/pub/local/Mechveliani/

provProgExam.zip

[Myre09] Magnus O. Myreen and Michael J.C. Gordon. Verified LISP Implementa-
tions on ARM, x86 and PowerPC. LNCS, 5674:359–374, 2009.

Abstract: This paper reports on a case study, which we believe
is the first to produce a formally verified end-to-end implementa-
tion of a functional programming language running on commer-
cial processors. Interpreters for the core of McCarthys LISP 1.5
were implemented in ARM, x86 and PowerPC machine code, and
proved to correctly parse, evaluate and print LISP s-expressions.
The proof of evaluation required working on top of verified im-
plementations of memory allocation and garbage collection. All
proofs are mechanised in the HOL4 theorem prover.

[Myre09a] Magnus O. Myreen, Konrad Slind, and Michael J.C. Gordon. Extensible
Proof-Producing Compilation. LNCS, 5501:2–16, 2009.

Abstract: This paper presents a compiler which produces ma-
chine code from functions defined in the logic of a theorem
prover, and at the same time proves that the generated code
executes the source functions. Unlike previously published work
on proof-producing compilation from a theorem prover, our com-
piler provides broad support for user-defined extensions, targets
multiple carefully modelled commercial machine languages, and
does not require termination proofs for input functions. As a case
study, the compiler is used to construct verified interpreters for
a small LISP-like language. The compiler has been implemented
in the HOL4 theorem prover.

http://www.botik.ru/pub/local/Mechveliani/provProgExam.zip
http://www.botik.ru/pub/local/Mechveliani/provProgExam.zip

120 BIBLIOGRAPHY

[Myre10] Magnus O. Myreen. Verified Just-In-Time Compiler on x86. ACM SIGLAN
Notices - POPL’10, 45(1):107–118, 2010.

Abstract: This paper presents a method for creating formally
correct just-in- time (JIT) compilers. The tractability of our ap-
proach is demonstrated through, what we believe is the first,
verification of a JIT compiler with respect to a realistic seman-
tics of self-modifying x86 machine code. Our semantics includes
a model of the instruction cache. Two versions of the verified JIT
compiler are presented: one generates all of the machine code at
once, the other one is incremental i.e. produces code on-demand.
All proofs have been performed inside the HOL4 theorem prover.

[Myre11] Magnus O. Myreen and Jared Davis. A Verified Runtime for a Verified
Theorem Prover. NCS, 6898:265–280, 2011.

Abstract: Theorem provers, such as ACL2, HOL, Isabelle and
Coq, rely on the correctness of runtime systems for programming
languages like ML, OCaml or Common Lisp. These runtime sys-
tems are complex and critical to the integrity of the theorem
provers. In this paper, we present a new Lisp runtime which has
been formally verified and can run the Milawa theorem prover.
Our runtime consists of 7,500 lines of machine code and is able
to complete a 4 gigabyte Milawa proof effort. When our runtime
is used to carry out Milawa proofs, less unverified code must
be trusted than with any other theorem prover. Our runtime
includes a just-in-time compiler, a copying garbage collector, a
parser and a printer, all of which are HOL4-verified down to
the concrete x86 code. We make heavy use of our previously
developed tools for machine-code verification. This work demon-
strates that our approach to machine-code verification scales to
non-trivial applications.

[Myre12] Magnus O. Myreen. Functional Programs: Conversions between Deep and
Shallow Embeddings. LNCS, 7406:412–417, 2012.

Abstract: This paper presents a method which simplifies veri-
fication of deeply embedded functional programs. We present a
technique by which proof-certified equations describing the effect
of functional programs (shallow embeddings) can be automati-
cally extracted from their operational semantics. Our method
can be used in reverse, i.e. from shallow to deep embeddings,
and thus for implementing certifying code synthesis: we have
implemented a tool which maps HOL functions to equivalent
Lisp functions, for which we have a verified Lisp runtime. A key
benefit, in both directions, is that the verifier does not need to
understand the operational semantics that gives meanings to the
deep embeddings.

[Myre14] Magnus O. Myreen and Jared Davis. The Reflective Milawa Theorem
Prover is Sound. LNAI, pages 421–436, 2014.

Abstract: Milawa is a theorem prover styled after ACL2 but
with a small kernel and a powerful reflection mechanism. We

BIBLIOGRAPHY 121

have used the HOL4 theorem prover to formalize the logic of
Milawa, prove the logic sound, and prove that the source code
for the Milawa kernel (2,000 lines of Lisp) is faithful to the logic.
Going further, we have combined these results with our previous
verification of an x86 machine-code implementation of a Lisp
runtime. Our top-level HOL4 theorem states that when Milawa
is run on top of our verified Lisp, it will only print theorem
statements that are semantically true. We believe that this top-
level theorem is the most comprehensive formal evidence of a
theorem provers soundness to date.

[Neup13] Walther Neuper. Computer Algebra implemented in Isabelle’s Function
Package under Lucas-Interpretation – a Case Study, 2013.

Link: http://ceur-ws.org/Vol-1010/paper-09.pdf

[OCAM14] unknown. The OCAML website.

Link: http://ocaml.org

[Pfei12] Greg Pfeil. Common Lisp Type Hierarchy, 2012.

Link: http://sellout.github.io/2012/03/03/

common-lisp-type-hierarchy

[Pier15] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Green-
berg, Catalin Hritcu, Vilhelm Sjöberg, and Brent Yorgey. Software Foun-
dations, 2015.

Abstract: This electronic book is a course on Software Founda-
tions, the mathematical underpinnings of reliable software. Top-
ics include basic concepts of logic, computer-assisted theorem
proving, the Coq proof assistant, functional programming, op-
erational semantics, Hoare logic, and static type systems. The
exposition is intended for a broad range of readers, from ad-
vanced undergraduates to PhD students and researchers. No spe-
cific background in logic or programming languages is assumed,
though a degree of mathematical maturity will be helpful. The
principal novelty of the course is that it is one hundred per cent
formalized and machine-checked: the entire text is literally a
script for Coq. It is intended to be read alongside an interactive
session with Coq. All the details in the text are fully formalized
in Coq, and the exercises are designed to be worked using Coq.
The files are organized into a sequence of core chapters, cover-
ing about one semester’s worth of material and organized into
a coherent linear narrative, plus a number of appendices cover-
ing additional topics. All the core chapters are suitable for both
upper-level undergraduate and graduate students.

[Pier17] Benjamin Pierce. DeepSpec Summer School, Coq Intensive, Part 1 (July
13,2017), 2017.

Link: https://www.youtube.com/watch?v=jG61w5pOc2A

[Reid17] Alastair Reid. How can you trust formally varified software, 2017.

Abstract: Formal verification of software has finally started to

http://ceur-ws.org/Vol-1010/paper-09.pdf
http://ocaml.org
http://sellout.github.io/2012/03/03/common-lisp-type-hierarchy
http://sellout.github.io/2012/03/03/common-lisp-type-hierarchy
https://www.youtube.com/watch?v=jG61w5pOc2A

122 BIBLIOGRAPHY

become viable: we have examples of formally verified microker-
nels, realistic compilers, hypervisors, etc. These are huge achieve-
ments and we can expect to see even more impressive results in
the future but the correctness proofs depend on a number of as-
sumptions about the Trusted Computing Base that the software
depends on. Two key questions to ask are: Are the specifications
of the Trusted Computing Base correct? And do the implemen-
tations match the specifications? I will explore the philosophical
challenges and practical steps you can taek in answering that
question for one of the major dependencies: the hardware your
software runs on. I will describe the combination of formal veri-
fication and testing that ARM uses to verify the processor spec-
ification and I will talk about our current challenge: getting the
specification down to zero bugs while the architecture continues
to evolve.

Link: https://media.ccc.de/v/34c3-8915-how_can_you_

trust_formally_verified_software#t=12

[Sant95] Philip S. Santas. A type system for computer algebra. J. Symbolic Com-
putation, 19(1-3):79–109, 1995.

Abstract: This paper presents a type system for support of
subtypes, parameterized types with sharing and categories in a
computer algebra environment. By modeling representation of
instances in terms of existential types, we obtain a simplified
model, and build a basis for defining subtyping among algebraic
domains. The inheritance at category level has been formalized;
this allows the automatic inference of type classes. By means of
type classes and existential types we construct subtype relations
without involving coercions. A type sharing mechanism works in
parallel and allows the consistent extension and combination of
domains. The expressiveness of the system is further increased
by viewing domain types as special case of package types, form-
ing weak and strong sums respectively. The introduced system,
although awkward at first sight, is simpler than other proposed
systems for computer algebra without including some of their
problems. The system can be further extended in other to sup-
port more constructs and increase its flexibility.

[Sho08] Victor Shoup. A Computational Introduction to Number Theory.

Link: http://shoup.net/ntb/ntb-v2.pdf

[Smol89a] G. Smolka. Logic Programming over Polymorphically Order-Sorted Types.
PhD thesis, Fachbereich Informatik, Universitat Kaiserslautern, 1989.

[Soze08] Mattieu Sozeau and Nicolas Oury. First-Class Type Classes. Lecture Notes
in Computer Science, 5170:278–293, 2008.

Abstract: Type Classes have met a large success in Haskell
and Isabelle, as a solution for sharing notations by overload-
ing and for specifying with abstract structures by quantificaiton
on contexts. However, both systems are limited by second-class
implementations of these constructs, and these limitations are

https://media.ccc.de/v/34c3-8915-how_can_you_trust_formally_verified_software#t=12
https://media.ccc.de/v/34c3-8915-how_can_you_trust_formally_verified_software#t=12
http://shoup.net/ntb/ntb-v2.pdf

BIBLIOGRAPHY 123

only overcome by ad-hoc extensions to the respective systems.
We propose an embedding of type classes into a dependent type
theory that is first-class and supports some of the most popular
extensions right away. The implementation is correspondingly
cheap, general, and integrates well inside the system, as we have
experimented in Coq. We show how it can be used to help struc-
tured programming and proving by way of examples.

Link: https://www.irif.fr/~sozeau/research/

publications/First-Class_Type_Classes.pdf

[Spit11] Bas Spitters and Eelis van der Weegen. Type classes for mathematics in
type theory. Math. Struct. Comput. Sci., 21(4):795–825, 2011.

Abstract: The introduction of first-class type classes in the Coq
system calls for a re-examination of the basic interfaces used for
mathematical formalisation in type theory. We present a new
set of type classes for mathematics and take full advantage of
their unique features to make practical a particularly flexible
approach that was formerly thought to be infeasible. Thus, we
address traditional proof engineering challenges as well as new
ones resulting from our ambition to build upon this development
a library of constructive analysis in which any abstraction penal-
ties inhibiting efficient computation are reduced to a minimum.
The basis of our development consists of type classes represent-
ing a standard algebraic hierarchy, as well as portions of category
theory and universal algebra. On this foundation, we build a set
of mathematically sound abstract interfaces for different kinds
of numbers, succinctly expressed using categorical language and
universal algebra constructions. Strategic use of type classes lets
us support these high-level theory-friendly definitions, while still
enabling efficient implementations unhindered by gratuitous in-
direction, conversion or projection. Algebra thrives on the inter-
play between syntax and semantics. The Prolog-like abilities of
type class instance resolution allow us to conveniently define a
quote function, thus facilitating the use of reflective techniques.

Link: https://arxiv.org/pdf/1102.1323.pdf

[Stac17] StackExchange. How do Gap generate the elements in permutation groups,
2017.

Link: http://math.stackexchange.com/questions/

1705277/how-do-gap-generate-the-elements-in-permutation-groups

[Suto87] Robert S. Sutor and Richard D. Jenks. The type inference and coercion
facilities in the Scratchpad II interpreter. SIGPLAN Notices, 22(7):56–63,
1987, 0-89791-235-7.

Abstract: The Scratchpad II system is an abstract datatype
programming language, a compiler for the language, a library
of packages of polymorphic functions and parametrized abstract
datatypes, and an interpreter that provides sophisticated type
inference and coercion facilities. Although originally designed
for the implementation of symbolic mathematical algorithms,

https://www.irif.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
https://www.irif.fr/~sozeau/research/publications/First-Class_Type_Classes.pdf
https://arxiv.org/pdf/1102.1323.pdf
http://math.stackexchange.com/questions/1705277/how-do-gap-generate-the-elements-in-permutation-groups
http://math.stackexchange.com/questions/1705277/how-do-gap-generate-the-elements-in-permutation-groups

124 BIBLIOGRAPHY

Scratchpad II is a general purpose programming language . This
paper discusses aspects of the implementation of the interpreter
and how it attempts to provide a user friendly and relatively
weakly typed front end for the strongly typed programming lan-
guage.

Comment: IBM Research Report RC 12595 (#56575)

[Talp92] Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline.
In Conf. on Logic in Computer Science. Computer Science Press, 1992.

Abstract: The type and effect discipline is a new framework for
reconstructing the principal type and the minimal effect of ex-
pressions in implicitly typed polymorphic functional languages
that support imperative constructs. The type and effect disci-
pline outperforms other polymorphic type systems. Just as types
abstract collections of concrete values, effects denote imperative
operations on regions. Regions abstract sets of possibly aliased
memory locations. Effects are used to control type generalization
in the presence of imperative constructs while regions delimit
observable side-effects. The observable effects of an expression
range over the regions that are free in its type environment and
its type; effects related to local data structures can be discarded
during type reconstruction. The type of an expression can be
generalized with respect to the variables that are not free in the
type environment or in the observable effect.

[Ther01] Laurent Théry. A Machine-Checked Implementation of Buchberger’s Al-
gorithm. Journal of Automated Reasoning, 26:107–137, 2001.

Abstract: We present an implementation of Buchberger’s al-
gorithm that has been proved correct within the proof assistant
Coq. The implementation contains the basic algorithm plus two
standard optimizations.

[Thur94] William P. Thurston. On Proof and Progress in Mathematics. Bulletin
AMS, 30(2), April 1994.

Link: http://www.ams.org/journals/bull/1994-30-02/

S0273-0979-1994-00502-6/S0273-0979-1994-00502-6.pdf

[Tros13] Anne Trostle. An Algorithm for the Greatest Common Divisor, 2013.

Link: http://www.nuprl.org/MathLibrary/gcd/

[Wijn68] A. van Wijngarrden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sint-
zoff, C.H. Lindsey, L.G.T. Meertens, and R.G. Fisker. Revised Report on
the Algorithmic Language ALGOL 68, 1968.

Link: http://www.eah-jena.de/~kleine/history/

languages/algol68-revisedreport.pdf

[Wiki14a] ProofWiki. Euclidean Algorithm.

Link: http://proofwiki.org/wiki/Euclidean_Algorithm

[Wiki14b] ProofWiki. Division Theorem.

Link: http://proofwiki.org/wiki/Division_Theorem

http://www.ams.org/journals/bull/1994-30-02/S0273-0979-1994-00502-6/S0273-0979-1994-00502-6.pdf
http://www.ams.org/journals/bull/1994-30-02/S0273-0979-1994-00502-6/S0273-0979-1994-00502-6.pdf
http://www.nuprl.org/MathLibrary/gcd/
http://www.eah-jena.de/~kleine/history/languages/algol68-revisedreport.pdf
http://www.eah-jena.de/~kleine/history/languages/algol68-revisedreport.pdf
http://proofwiki.org/wiki/Euclidean_Algorithm
http://proofwiki.org/wiki/Division_Theorem

BIBLIOGRAPHY 125

[Wiki17] Wikipedia. Calculus of constructions, 2017.

Link: https://en.wikipedia.org/wiki/Calculus_of_

constructions

[WikiED] Wikipedia. Euclidean Domain, 2017.

Link: https://en.wikipedia.org/wiki/Euclidean_domain

[Wilk85a] Maurice Wilkes. Memoirs of a Computer Pioneer. MIT Press, 1985.

[Zdan14] Steve Zdancewic and Milo M.K. Martin. Vellvm: Verifying the LLVM.

Link: http://www.cis.upenn.edu/~stevez/vellvm

https://en.wikipedia.org/wiki/Calculus_of_constructions
https://en.wikipedia.org/wiki/Calculus_of_constructions
https://en.wikipedia.org/wiki/Euclidean_domain
http://www.cis.upenn.edu/~stevez/vellvm

126 BIBLIOGRAPHY

Index

common divisor, 22

greatest common divisor, 22

relatively prime, 22

The Euclidean Algorithm, 23

127

	Why this effort will not succeed
	Progress Will Occur
	Here is a problem
	Proving the Algebra
	Defining the Spad syntax
	Defining the Spad semantics

	Proving the Logic
	Defining the Algebra specifications

	Proving the Lisp
	Proving the Compiler
	Proving to the metal
	Setting up the problem
	Axiom NNI GCD
	Mathematics
	Approaches

	Theory
	Hoare's axioms and gcd proof
	The Division Algorithm

	GCD in Nuprl by Anne Trostle
	Software Details
	Installed Software

	Temporal Logic of Actions (TLA)
	The algorithm
	Creating a new TLA+ module
	Definitions
	Constants and variables
	The specification
	Summary

	A simple proof
	The invariant
	Checking proofs
	Using facts and definitions

	Divisibility Definition

	COQ proof of GCD
	Basics of the Calculus of Constructions
	Terms
	Judgements
	Inference Rules
	Defining Logical Operators
	Defining Types

	Why does COQ have Prop?
	Source code of COQ GCD Proof

	LEAN proof of GCD
	Formal Pre- and Post-conditions
	Types and Signatures
	COQ nat vs Axiom NNI
	Library Coq.Init.Nat

	Binary Power in COQ by Casteran and Sozeau
	On Monoids
	Classes and Instances
	A generic definition of power
	Instance Resolution

	More Monoids
	Matrices over some ring

	Reasoning within a Type Class
	The Equivalence Proof
	Some Useful Lemmas About power
	Final Steps
	Discharging the Context
	Subclasses

	Proof Tower Layer: C11 using CH2O
	Other Ideas to Explore
	The Global Environment
	Related work
	Overview of related work
	Adams Adam01
	Ballarin Ball95
	Berger and Schwichtenberg Berg95
	Cardelli Card85
	Clarke Clar91
	Crocker Croc14
	Davenport Dave02
	Davis Davi09
	Filliatre Fill03
	Frege Freg1891
	Harrison [p13]Harr98
	Hoare Hoar87
	Jenks Jenk84b
	Kifer Kife91
	Meshveliani Mesh16a
	 Neup13
	Smolka Smol89a
	Strub, Pierre Yves
	Sutor Suto87
	Wijngaarden [Section 6, p95]Wijn68
	McAllester, D. and Arkondas, K., Mcal96

	Untyped Lambda in Common Lisp
	Bibliography
	Index

